Validation of the CoGEF Method as a Predictive Tool for Polymer Mechanochemistry

The development of force-responsive molecules called mechanophores is a central component of the field of polymer mechanochemistry. Mechanophores enable the design and fabrication of polymers for a variety of applications ranging from sensing to molecular release and self-healing materials. Neverthe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2020-09, Vol.142 (38), p.16364-16381
Hauptverfasser: Klein, Isabel M, Husic, Corey C, Kovács, Dávid P, Choquette, Nicolas J, Robb, Maxwell J
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16381
container_issue 38
container_start_page 16364
container_title Journal of the American Chemical Society
container_volume 142
creator Klein, Isabel M
Husic, Corey C
Kovács, Dávid P
Choquette, Nicolas J
Robb, Maxwell J
description The development of force-responsive molecules called mechanophores is a central component of the field of polymer mechanochemistry. Mechanophores enable the design and fabrication of polymers for a variety of applications ranging from sensing to molecular release and self-healing materials. Nevertheless, an insufficient understanding of structure–activity relationships limits experimental development, and thus computation is necessary to guide the structural design of mechanophores. The constrained geometries simulate external force (CoGEF) method is a highly accessible and straightforward computational technique that simulates the effect of mechanical force on a molecule and enables the prediction of mechanochemical reactivity. Here, we use the CoGEF method to systematically evaluate every covalent mechanophore reported to date and compare the predicted mechanochemical reactivity to experimental results. Molecules that are mechanochemically inactive are also studied as negative controls. In general, mechanochemical reactions predicted with the CoGEF method at the common B3LYP/6-31G* level of density functional theory are in excellent agreement with reactivity determined experimentally. Moreover, bond rupture forces obtained from CoGEF calculations are compared to experimentally measured forces and demonstrated to be reliable indicators of mechanochemical activity. This investigation validates the CoGEF method as a powerful tool for predicting mechanochemical reactivity, enabling its widespread adoption to support the developing field of polymer mechanochemistry. Secondarily, this study provides a contemporary catalog of over 100 mechanophores developed to date.
doi_str_mv 10.1021/jacs.0c06868
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2441258498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2441258498</sourcerecordid><originalsourceid>FETCH-LOGICAL-a428t-583c4d90dbcdce6b6c460fa62a8aa867b45b0b0cc266b6152423aa78b8bcdfe3</originalsourceid><addsrcrecordid>eNptkDFPwzAQhS0EoqWwMSOPDARsx3HcEVVtQSqiQ8VqXWxHSZXExU6Q-u9x1QIL0-l037279xC6peSREkaftqDDI9FESCHP0JhmjCQZZeIcjQkhLMmlSEfoKoRtbDmT9BKNUjYljOV8jNYf0NQG-tp12JW4ryyeueV8gd9sXzmDIWDAa29Nrfv6y-KNcw0uncdr1-xb6yOnK-icrmxbh97vr9FFCU2wN6c6QZvFfDN7SVbvy9fZ8yqB-EOfZDLV3EyJKbTRVhRCc0FKEAwkgBR5wbOCFERrJuIwmuIsBchlIeNCadMJuj_K7rz7HGzoVTyvbdNAZ90QFOOcskzyqYzowxHV3oXgbal2vm7B7xUl6hChOkSoThFG_O6kPBStNb_wT2Z_pw9bWzf4Lvr8X-sbM2t57Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441258498</pqid></control><display><type>article</type><title>Validation of the CoGEF Method as a Predictive Tool for Polymer Mechanochemistry</title><source>ACS Publications</source><creator>Klein, Isabel M ; Husic, Corey C ; Kovács, Dávid P ; Choquette, Nicolas J ; Robb, Maxwell J</creator><creatorcontrib>Klein, Isabel M ; Husic, Corey C ; Kovács, Dávid P ; Choquette, Nicolas J ; Robb, Maxwell J</creatorcontrib><description>The development of force-responsive molecules called mechanophores is a central component of the field of polymer mechanochemistry. Mechanophores enable the design and fabrication of polymers for a variety of applications ranging from sensing to molecular release and self-healing materials. Nevertheless, an insufficient understanding of structure–activity relationships limits experimental development, and thus computation is necessary to guide the structural design of mechanophores. The constrained geometries simulate external force (CoGEF) method is a highly accessible and straightforward computational technique that simulates the effect of mechanical force on a molecule and enables the prediction of mechanochemical reactivity. Here, we use the CoGEF method to systematically evaluate every covalent mechanophore reported to date and compare the predicted mechanochemical reactivity to experimental results. Molecules that are mechanochemically inactive are also studied as negative controls. In general, mechanochemical reactions predicted with the CoGEF method at the common B3LYP/6-31G* level of density functional theory are in excellent agreement with reactivity determined experimentally. Moreover, bond rupture forces obtained from CoGEF calculations are compared to experimentally measured forces and demonstrated to be reliable indicators of mechanochemical activity. This investigation validates the CoGEF method as a powerful tool for predicting mechanochemical reactivity, enabling its widespread adoption to support the developing field of polymer mechanochemistry. Secondarily, this study provides a contemporary catalog of over 100 mechanophores developed to date.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.0c06868</identifier><identifier>PMID: 32902274</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2020-09, Vol.142 (38), p.16364-16381</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a428t-583c4d90dbcdce6b6c460fa62a8aa867b45b0b0cc266b6152423aa78b8bcdfe3</citedby><cites>FETCH-LOGICAL-a428t-583c4d90dbcdce6b6c460fa62a8aa867b45b0b0cc266b6152423aa78b8bcdfe3</cites><orcidid>0000-0002-0528-9857 ; 0000-0003-0248-7484</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.0c06868$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.0c06868$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32902274$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Klein, Isabel M</creatorcontrib><creatorcontrib>Husic, Corey C</creatorcontrib><creatorcontrib>Kovács, Dávid P</creatorcontrib><creatorcontrib>Choquette, Nicolas J</creatorcontrib><creatorcontrib>Robb, Maxwell J</creatorcontrib><title>Validation of the CoGEF Method as a Predictive Tool for Polymer Mechanochemistry</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>The development of force-responsive molecules called mechanophores is a central component of the field of polymer mechanochemistry. Mechanophores enable the design and fabrication of polymers for a variety of applications ranging from sensing to molecular release and self-healing materials. Nevertheless, an insufficient understanding of structure–activity relationships limits experimental development, and thus computation is necessary to guide the structural design of mechanophores. The constrained geometries simulate external force (CoGEF) method is a highly accessible and straightforward computational technique that simulates the effect of mechanical force on a molecule and enables the prediction of mechanochemical reactivity. Here, we use the CoGEF method to systematically evaluate every covalent mechanophore reported to date and compare the predicted mechanochemical reactivity to experimental results. Molecules that are mechanochemically inactive are also studied as negative controls. In general, mechanochemical reactions predicted with the CoGEF method at the common B3LYP/6-31G* level of density functional theory are in excellent agreement with reactivity determined experimentally. Moreover, bond rupture forces obtained from CoGEF calculations are compared to experimentally measured forces and demonstrated to be reliable indicators of mechanochemical activity. This investigation validates the CoGEF method as a powerful tool for predicting mechanochemical reactivity, enabling its widespread adoption to support the developing field of polymer mechanochemistry. Secondarily, this study provides a contemporary catalog of over 100 mechanophores developed to date.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNptkDFPwzAQhS0EoqWwMSOPDARsx3HcEVVtQSqiQ8VqXWxHSZXExU6Q-u9x1QIL0-l037279xC6peSREkaftqDDI9FESCHP0JhmjCQZZeIcjQkhLMmlSEfoKoRtbDmT9BKNUjYljOV8jNYf0NQG-tp12JW4ryyeueV8gd9sXzmDIWDAa29Nrfv6y-KNcw0uncdr1-xb6yOnK-icrmxbh97vr9FFCU2wN6c6QZvFfDN7SVbvy9fZ8yqB-EOfZDLV3EyJKbTRVhRCc0FKEAwkgBR5wbOCFERrJuIwmuIsBchlIeNCadMJuj_K7rz7HGzoVTyvbdNAZ90QFOOcskzyqYzowxHV3oXgbal2vm7B7xUl6hChOkSoThFG_O6kPBStNb_wT2Z_pw9bWzf4Lvr8X-sbM2t57Q</recordid><startdate>20200923</startdate><enddate>20200923</enddate><creator>Klein, Isabel M</creator><creator>Husic, Corey C</creator><creator>Kovács, Dávid P</creator><creator>Choquette, Nicolas J</creator><creator>Robb, Maxwell J</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0528-9857</orcidid><orcidid>https://orcid.org/0000-0003-0248-7484</orcidid></search><sort><creationdate>20200923</creationdate><title>Validation of the CoGEF Method as a Predictive Tool for Polymer Mechanochemistry</title><author>Klein, Isabel M ; Husic, Corey C ; Kovács, Dávid P ; Choquette, Nicolas J ; Robb, Maxwell J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a428t-583c4d90dbcdce6b6c460fa62a8aa867b45b0b0cc266b6152423aa78b8bcdfe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klein, Isabel M</creatorcontrib><creatorcontrib>Husic, Corey C</creatorcontrib><creatorcontrib>Kovács, Dávid P</creatorcontrib><creatorcontrib>Choquette, Nicolas J</creatorcontrib><creatorcontrib>Robb, Maxwell J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klein, Isabel M</au><au>Husic, Corey C</au><au>Kovács, Dávid P</au><au>Choquette, Nicolas J</au><au>Robb, Maxwell J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Validation of the CoGEF Method as a Predictive Tool for Polymer Mechanochemistry</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2020-09-23</date><risdate>2020</risdate><volume>142</volume><issue>38</issue><spage>16364</spage><epage>16381</epage><pages>16364-16381</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>The development of force-responsive molecules called mechanophores is a central component of the field of polymer mechanochemistry. Mechanophores enable the design and fabrication of polymers for a variety of applications ranging from sensing to molecular release and self-healing materials. Nevertheless, an insufficient understanding of structure–activity relationships limits experimental development, and thus computation is necessary to guide the structural design of mechanophores. The constrained geometries simulate external force (CoGEF) method is a highly accessible and straightforward computational technique that simulates the effect of mechanical force on a molecule and enables the prediction of mechanochemical reactivity. Here, we use the CoGEF method to systematically evaluate every covalent mechanophore reported to date and compare the predicted mechanochemical reactivity to experimental results. Molecules that are mechanochemically inactive are also studied as negative controls. In general, mechanochemical reactions predicted with the CoGEF method at the common B3LYP/6-31G* level of density functional theory are in excellent agreement with reactivity determined experimentally. Moreover, bond rupture forces obtained from CoGEF calculations are compared to experimentally measured forces and demonstrated to be reliable indicators of mechanochemical activity. This investigation validates the CoGEF method as a powerful tool for predicting mechanochemical reactivity, enabling its widespread adoption to support the developing field of polymer mechanochemistry. Secondarily, this study provides a contemporary catalog of over 100 mechanophores developed to date.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32902274</pmid><doi>10.1021/jacs.0c06868</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-0528-9857</orcidid><orcidid>https://orcid.org/0000-0003-0248-7484</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2020-09, Vol.142 (38), p.16364-16381
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_2441258498
source ACS Publications
title Validation of the CoGEF Method as a Predictive Tool for Polymer Mechanochemistry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A21%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Validation%20of%20the%20CoGEF%20Method%20as%20a%20Predictive%20Tool%20for%20Polymer%20Mechanochemistry&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Klein,%20Isabel%20M&rft.date=2020-09-23&rft.volume=142&rft.issue=38&rft.spage=16364&rft.epage=16381&rft.pages=16364-16381&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.0c06868&rft_dat=%3Cproquest_cross%3E2441258498%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2441258498&rft_id=info:pmid/32902274&rfr_iscdi=true