Gas chromatography-mass spectrometry untargeted profiling of non-Hodgkin’s lymphoma urinary metabolite markers
Non-Hodgkin’s lymphoma (NHL) is a cancer of the lymphatic system where the lymphoid and hematopoietic tissues are infiltrated by malignant neoplasms of B, T, and natural killer lymphocytes. Effective and less invasive methods for NHL screening are urgently needed. Herein, we report an untargeted gas...
Gespeichert in:
Veröffentlicht in: | Analytical and bioanalytical chemistry 2020-11, Vol.412 (27), p.7469-7480 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7480 |
---|---|
container_issue | 27 |
container_start_page | 7469 |
container_title | Analytical and bioanalytical chemistry |
container_volume | 412 |
creator | Bueno Duarte, Gustavo Henrique de Piloto Fernandes, Anna Maria Alves Silva, Alex Aparecido Rosini Zamora-Obando, Hans R. Amaral, Alan Gonçalves de Sousa Mesquita, Alessandra Schmidt-Filho, Jayr Cordeiro de Lima, Vladmir C. D’Almeida Costa, Felipe Andrade, Victor Piana Porcari, Andreia M. Eberlin, Marcos Nogueira Simionato, Ana Valéria Colnaghi |
description | Non-Hodgkin’s lymphoma (NHL) is a cancer of the lymphatic system where the lymphoid and hematopoietic tissues are infiltrated by malignant neoplasms of B, T, and natural killer lymphocytes. Effective and less invasive methods for NHL screening are urgently needed. Herein, we report an untargeted gas chromatography-mass spectrometry (GC-MS) method to investigate metabolic changes in non-volatile derivatized compounds from urine samples of NHL patients (
N
= 15) and compare them to healthy controls (
N
= 34). Uni- and multivariate data analysis showed 18 endogenous metabolites, including amino acids and their metabolites, sugars, small organic acids, and vitamins, as statistically significant for group differentiation. A receiver operating characteristic curve (ROC) generated from a support vector machine (SVM) algorithm-based model achieved 0.998 of predictive accuracy, displaying the potential and relevance of GC-MS-detected urinary non-volatile compounds for predictive purposes. Furthermore, a specific panel of key metabolites was also evaluated, showing similar results. All in all, our results indicate that this robust GC-MS method is an effective screening tool for NHL diagnosis and it is able to highlight different pathways of the disease.
Graphical Abstract |
doi_str_mv | 10.1007/s00216-020-02881-5 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2440901735</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A637489167</galeid><sourcerecordid>A637489167</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-1c798f95b8ce0a7791d5ef94d8cd7eb808b9e0f7ad7640ce9dd6e823502a90e33</originalsourceid><addsrcrecordid>eNp9kUFu3CAYha2qUZMmuUAXlaVusnH6g8HAMoqapFKkbpo1wvDb48QGF-zF7HKNXq8nKdNJE7WqKoRA8L2nB68o3hE4JwDiYwKgpKmAQp5Skoq_Ko5IQ2RFGw6vn_eMHhZvU7oHIFyS5k1xWFOpBCP0qJivTSrtJobJLKGPZt5sq8mkVKYZ7ZKPcYnbcvWLiT0u6Mo5hm4YB9-XoSt98NVNcP3D4H88fk_luJ3mTbYq1zh4k4VZbtowDguWk4kPGNNJcdCZMeHp03pc3F19-np5U91-uf58eXFbWcboUhErlOwUb6VFMEIo4jh2ijlpncBWgmwVQieMEw0Di8q5BiWtOVCjAOv6uDjb--bA31ZMi56GZHEcjcewJk0ZAwVE1DyjH_5C78MafU63oxTjnBD2QvVmRD34LizR2J2pvmhqwaQijcjU-T-oPBxOgw0e8-fhnwK6F9gYUorY6TkO-a-2moDe1az3Netcs_5Vs94lfv-UeG0ndM-S371moN4DKV_5HuPLk_5j-xM_PbRb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449455114</pqid></control><display><type>article</type><title>Gas chromatography-mass spectrometry untargeted profiling of non-Hodgkin’s lymphoma urinary metabolite markers</title><source>MEDLINE</source><source>SpringerLink Journals (MCLS)</source><creator>Bueno Duarte, Gustavo Henrique ; de Piloto Fernandes, Anna Maria Alves ; Silva, Alex Aparecido Rosini ; Zamora-Obando, Hans R. ; Amaral, Alan Gonçalves ; de Sousa Mesquita, Alessandra ; Schmidt-Filho, Jayr ; Cordeiro de Lima, Vladmir C. ; D’Almeida Costa, Felipe ; Andrade, Victor Piana ; Porcari, Andreia M. ; Eberlin, Marcos Nogueira ; Simionato, Ana Valéria Colnaghi</creator><creatorcontrib>Bueno Duarte, Gustavo Henrique ; de Piloto Fernandes, Anna Maria Alves ; Silva, Alex Aparecido Rosini ; Zamora-Obando, Hans R. ; Amaral, Alan Gonçalves ; de Sousa Mesquita, Alessandra ; Schmidt-Filho, Jayr ; Cordeiro de Lima, Vladmir C. ; D’Almeida Costa, Felipe ; Andrade, Victor Piana ; Porcari, Andreia M. ; Eberlin, Marcos Nogueira ; Simionato, Ana Valéria Colnaghi</creatorcontrib><description>Non-Hodgkin’s lymphoma (NHL) is a cancer of the lymphatic system where the lymphoid and hematopoietic tissues are infiltrated by malignant neoplasms of B, T, and natural killer lymphocytes. Effective and less invasive methods for NHL screening are urgently needed. Herein, we report an untargeted gas chromatography-mass spectrometry (GC-MS) method to investigate metabolic changes in non-volatile derivatized compounds from urine samples of NHL patients (
N
= 15) and compare them to healthy controls (
N
= 34). Uni- and multivariate data analysis showed 18 endogenous metabolites, including amino acids and their metabolites, sugars, small organic acids, and vitamins, as statistically significant for group differentiation. A receiver operating characteristic curve (ROC) generated from a support vector machine (SVM) algorithm-based model achieved 0.998 of predictive accuracy, displaying the potential and relevance of GC-MS-detected urinary non-volatile compounds for predictive purposes. Furthermore, a specific panel of key metabolites was also evaluated, showing similar results. All in all, our results indicate that this robust GC-MS method is an effective screening tool for NHL diagnosis and it is able to highlight different pathways of the disease.
Graphical Abstract</description><identifier>ISSN: 1618-2642</identifier><identifier>EISSN: 1618-2650</identifier><identifier>DOI: 10.1007/s00216-020-02881-5</identifier><identifier>PMID: 32897412</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adult ; Aged ; Algorithms ; Amino acids ; Analytical Chemistry ; Biochemistry ; Biomarkers, Tumor - metabolism ; Biomarkers, Tumor - urine ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Chromatography ; Data analysis ; Female ; Food Science ; Gas chromatography ; Gas Chromatography-Mass Spectrometry - methods ; Humans ; Information management ; Invasiveness ; Laboratory Medicine ; Lymphatic system ; Lymphocytes ; Lymphocytes T ; Lymphoma ; Lymphoma, Non-Hodgkin - metabolism ; Lymphoma, Non-Hodgkin - urine ; Male ; Mass spectrometry ; Mass spectroscopy ; Metabolites ; Metabolome ; Metabolomics - methods ; Middle Aged ; Model accuracy ; Monitoring/Environmental Analysis ; Multivariate analysis ; Neoplasia ; Neoplasms ; Non-Hodgkin's lymphoma ; Non-Hodgkin's lymphomas ; Organic acids ; Research Paper ; Scientific imaging ; Spectroscopy ; Spectrum analysis ; Statistical analysis ; Statistical methods ; Sugar ; Support vector machines ; Vitamins ; Volatile compounds</subject><ispartof>Analytical and bioanalytical chemistry, 2020-11, Vol.412 (27), p.7469-7480</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-1c798f95b8ce0a7791d5ef94d8cd7eb808b9e0f7ad7640ce9dd6e823502a90e33</citedby><cites>FETCH-LOGICAL-c442t-1c798f95b8ce0a7791d5ef94d8cd7eb808b9e0f7ad7640ce9dd6e823502a90e33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00216-020-02881-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00216-020-02881-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32897412$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bueno Duarte, Gustavo Henrique</creatorcontrib><creatorcontrib>de Piloto Fernandes, Anna Maria Alves</creatorcontrib><creatorcontrib>Silva, Alex Aparecido Rosini</creatorcontrib><creatorcontrib>Zamora-Obando, Hans R.</creatorcontrib><creatorcontrib>Amaral, Alan Gonçalves</creatorcontrib><creatorcontrib>de Sousa Mesquita, Alessandra</creatorcontrib><creatorcontrib>Schmidt-Filho, Jayr</creatorcontrib><creatorcontrib>Cordeiro de Lima, Vladmir C.</creatorcontrib><creatorcontrib>D’Almeida Costa, Felipe</creatorcontrib><creatorcontrib>Andrade, Victor Piana</creatorcontrib><creatorcontrib>Porcari, Andreia M.</creatorcontrib><creatorcontrib>Eberlin, Marcos Nogueira</creatorcontrib><creatorcontrib>Simionato, Ana Valéria Colnaghi</creatorcontrib><title>Gas chromatography-mass spectrometry untargeted profiling of non-Hodgkin’s lymphoma urinary metabolite markers</title><title>Analytical and bioanalytical chemistry</title><addtitle>Anal Bioanal Chem</addtitle><addtitle>Anal Bioanal Chem</addtitle><description>Non-Hodgkin’s lymphoma (NHL) is a cancer of the lymphatic system where the lymphoid and hematopoietic tissues are infiltrated by malignant neoplasms of B, T, and natural killer lymphocytes. Effective and less invasive methods for NHL screening are urgently needed. Herein, we report an untargeted gas chromatography-mass spectrometry (GC-MS) method to investigate metabolic changes in non-volatile derivatized compounds from urine samples of NHL patients (
N
= 15) and compare them to healthy controls (
N
= 34). Uni- and multivariate data analysis showed 18 endogenous metabolites, including amino acids and their metabolites, sugars, small organic acids, and vitamins, as statistically significant for group differentiation. A receiver operating characteristic curve (ROC) generated from a support vector machine (SVM) algorithm-based model achieved 0.998 of predictive accuracy, displaying the potential and relevance of GC-MS-detected urinary non-volatile compounds for predictive purposes. Furthermore, a specific panel of key metabolites was also evaluated, showing similar results. All in all, our results indicate that this robust GC-MS method is an effective screening tool for NHL diagnosis and it is able to highlight different pathways of the disease.
Graphical Abstract</description><subject>Adult</subject><subject>Aged</subject><subject>Algorithms</subject><subject>Amino acids</subject><subject>Analytical Chemistry</subject><subject>Biochemistry</subject><subject>Biomarkers, Tumor - metabolism</subject><subject>Biomarkers, Tumor - urine</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chromatography</subject><subject>Data analysis</subject><subject>Female</subject><subject>Food Science</subject><subject>Gas chromatography</subject><subject>Gas Chromatography-Mass Spectrometry - methods</subject><subject>Humans</subject><subject>Information management</subject><subject>Invasiveness</subject><subject>Laboratory Medicine</subject><subject>Lymphatic system</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Lymphoma</subject><subject>Lymphoma, Non-Hodgkin - metabolism</subject><subject>Lymphoma, Non-Hodgkin - urine</subject><subject>Male</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Metabolites</subject><subject>Metabolome</subject><subject>Metabolomics - methods</subject><subject>Middle Aged</subject><subject>Model accuracy</subject><subject>Monitoring/Environmental Analysis</subject><subject>Multivariate analysis</subject><subject>Neoplasia</subject><subject>Neoplasms</subject><subject>Non-Hodgkin's lymphoma</subject><subject>Non-Hodgkin's lymphomas</subject><subject>Organic acids</subject><subject>Research Paper</subject><subject>Scientific imaging</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Sugar</subject><subject>Support vector machines</subject><subject>Vitamins</subject><subject>Volatile compounds</subject><issn>1618-2642</issn><issn>1618-2650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUFu3CAYha2qUZMmuUAXlaVusnH6g8HAMoqapFKkbpo1wvDb48QGF-zF7HKNXq8nKdNJE7WqKoRA8L2nB68o3hE4JwDiYwKgpKmAQp5Skoq_Ko5IQ2RFGw6vn_eMHhZvU7oHIFyS5k1xWFOpBCP0qJivTSrtJobJLKGPZt5sq8mkVKYZ7ZKPcYnbcvWLiT0u6Mo5hm4YB9-XoSt98NVNcP3D4H88fk_luJ3mTbYq1zh4k4VZbtowDguWk4kPGNNJcdCZMeHp03pc3F19-np5U91-uf58eXFbWcboUhErlOwUb6VFMEIo4jh2ijlpncBWgmwVQieMEw0Di8q5BiWtOVCjAOv6uDjb--bA31ZMi56GZHEcjcewJk0ZAwVE1DyjH_5C78MafU63oxTjnBD2QvVmRD34LizR2J2pvmhqwaQijcjU-T-oPBxOgw0e8-fhnwK6F9gYUorY6TkO-a-2moDe1az3Netcs_5Vs94lfv-UeG0ndM-S371moN4DKV_5HuPLk_5j-xM_PbRb</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Bueno Duarte, Gustavo Henrique</creator><creator>de Piloto Fernandes, Anna Maria Alves</creator><creator>Silva, Alex Aparecido Rosini</creator><creator>Zamora-Obando, Hans R.</creator><creator>Amaral, Alan Gonçalves</creator><creator>de Sousa Mesquita, Alessandra</creator><creator>Schmidt-Filho, Jayr</creator><creator>Cordeiro de Lima, Vladmir C.</creator><creator>D’Almeida Costa, Felipe</creator><creator>Andrade, Victor Piana</creator><creator>Porcari, Andreia M.</creator><creator>Eberlin, Marcos Nogueira</creator><creator>Simionato, Ana Valéria Colnaghi</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope></search><sort><creationdate>20201101</creationdate><title>Gas chromatography-mass spectrometry untargeted profiling of non-Hodgkin’s lymphoma urinary metabolite markers</title><author>Bueno Duarte, Gustavo Henrique ; de Piloto Fernandes, Anna Maria Alves ; Silva, Alex Aparecido Rosini ; Zamora-Obando, Hans R. ; Amaral, Alan Gonçalves ; de Sousa Mesquita, Alessandra ; Schmidt-Filho, Jayr ; Cordeiro de Lima, Vladmir C. ; D’Almeida Costa, Felipe ; Andrade, Victor Piana ; Porcari, Andreia M. ; Eberlin, Marcos Nogueira ; Simionato, Ana Valéria Colnaghi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-1c798f95b8ce0a7791d5ef94d8cd7eb808b9e0f7ad7640ce9dd6e823502a90e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Algorithms</topic><topic>Amino acids</topic><topic>Analytical Chemistry</topic><topic>Biochemistry</topic><topic>Biomarkers, Tumor - metabolism</topic><topic>Biomarkers, Tumor - urine</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chromatography</topic><topic>Data analysis</topic><topic>Female</topic><topic>Food Science</topic><topic>Gas chromatography</topic><topic>Gas Chromatography-Mass Spectrometry - methods</topic><topic>Humans</topic><topic>Information management</topic><topic>Invasiveness</topic><topic>Laboratory Medicine</topic><topic>Lymphatic system</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Lymphoma</topic><topic>Lymphoma, Non-Hodgkin - metabolism</topic><topic>Lymphoma, Non-Hodgkin - urine</topic><topic>Male</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Metabolites</topic><topic>Metabolome</topic><topic>Metabolomics - methods</topic><topic>Middle Aged</topic><topic>Model accuracy</topic><topic>Monitoring/Environmental Analysis</topic><topic>Multivariate analysis</topic><topic>Neoplasia</topic><topic>Neoplasms</topic><topic>Non-Hodgkin's lymphoma</topic><topic>Non-Hodgkin's lymphomas</topic><topic>Organic acids</topic><topic>Research Paper</topic><topic>Scientific imaging</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Sugar</topic><topic>Support vector machines</topic><topic>Vitamins</topic><topic>Volatile compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bueno Duarte, Gustavo Henrique</creatorcontrib><creatorcontrib>de Piloto Fernandes, Anna Maria Alves</creatorcontrib><creatorcontrib>Silva, Alex Aparecido Rosini</creatorcontrib><creatorcontrib>Zamora-Obando, Hans R.</creatorcontrib><creatorcontrib>Amaral, Alan Gonçalves</creatorcontrib><creatorcontrib>de Sousa Mesquita, Alessandra</creatorcontrib><creatorcontrib>Schmidt-Filho, Jayr</creatorcontrib><creatorcontrib>Cordeiro de Lima, Vladmir C.</creatorcontrib><creatorcontrib>D’Almeida Costa, Felipe</creatorcontrib><creatorcontrib>Andrade, Victor Piana</creatorcontrib><creatorcontrib>Porcari, Andreia M.</creatorcontrib><creatorcontrib>Eberlin, Marcos Nogueira</creatorcontrib><creatorcontrib>Simionato, Ana Valéria Colnaghi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical and bioanalytical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bueno Duarte, Gustavo Henrique</au><au>de Piloto Fernandes, Anna Maria Alves</au><au>Silva, Alex Aparecido Rosini</au><au>Zamora-Obando, Hans R.</au><au>Amaral, Alan Gonçalves</au><au>de Sousa Mesquita, Alessandra</au><au>Schmidt-Filho, Jayr</au><au>Cordeiro de Lima, Vladmir C.</au><au>D’Almeida Costa, Felipe</au><au>Andrade, Victor Piana</au><au>Porcari, Andreia M.</au><au>Eberlin, Marcos Nogueira</au><au>Simionato, Ana Valéria Colnaghi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gas chromatography-mass spectrometry untargeted profiling of non-Hodgkin’s lymphoma urinary metabolite markers</atitle><jtitle>Analytical and bioanalytical chemistry</jtitle><stitle>Anal Bioanal Chem</stitle><addtitle>Anal Bioanal Chem</addtitle><date>2020-11-01</date><risdate>2020</risdate><volume>412</volume><issue>27</issue><spage>7469</spage><epage>7480</epage><pages>7469-7480</pages><issn>1618-2642</issn><eissn>1618-2650</eissn><abstract>Non-Hodgkin’s lymphoma (NHL) is a cancer of the lymphatic system where the lymphoid and hematopoietic tissues are infiltrated by malignant neoplasms of B, T, and natural killer lymphocytes. Effective and less invasive methods for NHL screening are urgently needed. Herein, we report an untargeted gas chromatography-mass spectrometry (GC-MS) method to investigate metabolic changes in non-volatile derivatized compounds from urine samples of NHL patients (
N
= 15) and compare them to healthy controls (
N
= 34). Uni- and multivariate data analysis showed 18 endogenous metabolites, including amino acids and their metabolites, sugars, small organic acids, and vitamins, as statistically significant for group differentiation. A receiver operating characteristic curve (ROC) generated from a support vector machine (SVM) algorithm-based model achieved 0.998 of predictive accuracy, displaying the potential and relevance of GC-MS-detected urinary non-volatile compounds for predictive purposes. Furthermore, a specific panel of key metabolites was also evaluated, showing similar results. All in all, our results indicate that this robust GC-MS method is an effective screening tool for NHL diagnosis and it is able to highlight different pathways of the disease.
Graphical Abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>32897412</pmid><doi>10.1007/s00216-020-02881-5</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1618-2642 |
ispartof | Analytical and bioanalytical chemistry, 2020-11, Vol.412 (27), p.7469-7480 |
issn | 1618-2642 1618-2650 |
language | eng |
recordid | cdi_proquest_miscellaneous_2440901735 |
source | MEDLINE; SpringerLink Journals (MCLS) |
subjects | Adult Aged Algorithms Amino acids Analytical Chemistry Biochemistry Biomarkers, Tumor - metabolism Biomarkers, Tumor - urine Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Chromatography Data analysis Female Food Science Gas chromatography Gas Chromatography-Mass Spectrometry - methods Humans Information management Invasiveness Laboratory Medicine Lymphatic system Lymphocytes Lymphocytes T Lymphoma Lymphoma, Non-Hodgkin - metabolism Lymphoma, Non-Hodgkin - urine Male Mass spectrometry Mass spectroscopy Metabolites Metabolome Metabolomics - methods Middle Aged Model accuracy Monitoring/Environmental Analysis Multivariate analysis Neoplasia Neoplasms Non-Hodgkin's lymphoma Non-Hodgkin's lymphomas Organic acids Research Paper Scientific imaging Spectroscopy Spectrum analysis Statistical analysis Statistical methods Sugar Support vector machines Vitamins Volatile compounds |
title | Gas chromatography-mass spectrometry untargeted profiling of non-Hodgkin’s lymphoma urinary metabolite markers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A58%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gas%20chromatography-mass%20spectrometry%20untargeted%20profiling%20of%20non-Hodgkin%E2%80%99s%20lymphoma%20urinary%20metabolite%20markers&rft.jtitle=Analytical%20and%20bioanalytical%20chemistry&rft.au=Bueno%20Duarte,%20Gustavo%20Henrique&rft.date=2020-11-01&rft.volume=412&rft.issue=27&rft.spage=7469&rft.epage=7480&rft.pages=7469-7480&rft.issn=1618-2642&rft.eissn=1618-2650&rft_id=info:doi/10.1007/s00216-020-02881-5&rft_dat=%3Cgale_proqu%3EA637489167%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2449455114&rft_id=info:pmid/32897412&rft_galeid=A637489167&rfr_iscdi=true |