Gas chromatography-mass spectrometry untargeted profiling of non-Hodgkin’s lymphoma urinary metabolite markers

Non-Hodgkin’s lymphoma (NHL) is a cancer of the lymphatic system where the lymphoid and hematopoietic tissues are infiltrated by malignant neoplasms of B, T, and natural killer lymphocytes. Effective and less invasive methods for NHL screening are urgently needed. Herein, we report an untargeted gas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical and bioanalytical chemistry 2020-11, Vol.412 (27), p.7469-7480
Hauptverfasser: Bueno Duarte, Gustavo Henrique, de Piloto Fernandes, Anna Maria Alves, Silva, Alex Aparecido Rosini, Zamora-Obando, Hans R., Amaral, Alan Gonçalves, de Sousa Mesquita, Alessandra, Schmidt-Filho, Jayr, Cordeiro de Lima, Vladmir C., D’Almeida Costa, Felipe, Andrade, Victor Piana, Porcari, Andreia M., Eberlin, Marcos Nogueira, Simionato, Ana Valéria Colnaghi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7480
container_issue 27
container_start_page 7469
container_title Analytical and bioanalytical chemistry
container_volume 412
creator Bueno Duarte, Gustavo Henrique
de Piloto Fernandes, Anna Maria Alves
Silva, Alex Aparecido Rosini
Zamora-Obando, Hans R.
Amaral, Alan Gonçalves
de Sousa Mesquita, Alessandra
Schmidt-Filho, Jayr
Cordeiro de Lima, Vladmir C.
D’Almeida Costa, Felipe
Andrade, Victor Piana
Porcari, Andreia M.
Eberlin, Marcos Nogueira
Simionato, Ana Valéria Colnaghi
description Non-Hodgkin’s lymphoma (NHL) is a cancer of the lymphatic system where the lymphoid and hematopoietic tissues are infiltrated by malignant neoplasms of B, T, and natural killer lymphocytes. Effective and less invasive methods for NHL screening are urgently needed. Herein, we report an untargeted gas chromatography-mass spectrometry (GC-MS) method to investigate metabolic changes in non-volatile derivatized compounds from urine samples of NHL patients ( N  = 15) and compare them to healthy controls ( N  = 34). Uni- and multivariate data analysis showed 18 endogenous metabolites, including amino acids and their metabolites, sugars, small organic acids, and vitamins, as statistically significant for group differentiation. A receiver operating characteristic curve (ROC) generated from a support vector machine (SVM) algorithm-based model achieved 0.998 of predictive accuracy, displaying the potential and relevance of GC-MS-detected urinary non-volatile compounds for predictive purposes. Furthermore, a specific panel of key metabolites was also evaluated, showing similar results. All in all, our results indicate that this robust GC-MS method is an effective screening tool for NHL diagnosis and it is able to highlight different pathways of the disease. Graphical Abstract
doi_str_mv 10.1007/s00216-020-02881-5
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2440901735</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A637489167</galeid><sourcerecordid>A637489167</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-1c798f95b8ce0a7791d5ef94d8cd7eb808b9e0f7ad7640ce9dd6e823502a90e33</originalsourceid><addsrcrecordid>eNp9kUFu3CAYha2qUZMmuUAXlaVusnH6g8HAMoqapFKkbpo1wvDb48QGF-zF7HKNXq8nKdNJE7WqKoRA8L2nB68o3hE4JwDiYwKgpKmAQp5Skoq_Ko5IQ2RFGw6vn_eMHhZvU7oHIFyS5k1xWFOpBCP0qJivTSrtJobJLKGPZt5sq8mkVKYZ7ZKPcYnbcvWLiT0u6Mo5hm4YB9-XoSt98NVNcP3D4H88fk_luJ3mTbYq1zh4k4VZbtowDguWk4kPGNNJcdCZMeHp03pc3F19-np5U91-uf58eXFbWcboUhErlOwUb6VFMEIo4jh2ijlpncBWgmwVQieMEw0Di8q5BiWtOVCjAOv6uDjb--bA31ZMi56GZHEcjcewJk0ZAwVE1DyjH_5C78MafU63oxTjnBD2QvVmRD34LizR2J2pvmhqwaQijcjU-T-oPBxOgw0e8-fhnwK6F9gYUorY6TkO-a-2moDe1az3Netcs_5Vs94lfv-UeG0ndM-S371moN4DKV_5HuPLk_5j-xM_PbRb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449455114</pqid></control><display><type>article</type><title>Gas chromatography-mass spectrometry untargeted profiling of non-Hodgkin’s lymphoma urinary metabolite markers</title><source>MEDLINE</source><source>SpringerLink Journals (MCLS)</source><creator>Bueno Duarte, Gustavo Henrique ; de Piloto Fernandes, Anna Maria Alves ; Silva, Alex Aparecido Rosini ; Zamora-Obando, Hans R. ; Amaral, Alan Gonçalves ; de Sousa Mesquita, Alessandra ; Schmidt-Filho, Jayr ; Cordeiro de Lima, Vladmir C. ; D’Almeida Costa, Felipe ; Andrade, Victor Piana ; Porcari, Andreia M. ; Eberlin, Marcos Nogueira ; Simionato, Ana Valéria Colnaghi</creator><creatorcontrib>Bueno Duarte, Gustavo Henrique ; de Piloto Fernandes, Anna Maria Alves ; Silva, Alex Aparecido Rosini ; Zamora-Obando, Hans R. ; Amaral, Alan Gonçalves ; de Sousa Mesquita, Alessandra ; Schmidt-Filho, Jayr ; Cordeiro de Lima, Vladmir C. ; D’Almeida Costa, Felipe ; Andrade, Victor Piana ; Porcari, Andreia M. ; Eberlin, Marcos Nogueira ; Simionato, Ana Valéria Colnaghi</creatorcontrib><description>Non-Hodgkin’s lymphoma (NHL) is a cancer of the lymphatic system where the lymphoid and hematopoietic tissues are infiltrated by malignant neoplasms of B, T, and natural killer lymphocytes. Effective and less invasive methods for NHL screening are urgently needed. Herein, we report an untargeted gas chromatography-mass spectrometry (GC-MS) method to investigate metabolic changes in non-volatile derivatized compounds from urine samples of NHL patients ( N  = 15) and compare them to healthy controls ( N  = 34). Uni- and multivariate data analysis showed 18 endogenous metabolites, including amino acids and their metabolites, sugars, small organic acids, and vitamins, as statistically significant for group differentiation. A receiver operating characteristic curve (ROC) generated from a support vector machine (SVM) algorithm-based model achieved 0.998 of predictive accuracy, displaying the potential and relevance of GC-MS-detected urinary non-volatile compounds for predictive purposes. Furthermore, a specific panel of key metabolites was also evaluated, showing similar results. All in all, our results indicate that this robust GC-MS method is an effective screening tool for NHL diagnosis and it is able to highlight different pathways of the disease. Graphical Abstract</description><identifier>ISSN: 1618-2642</identifier><identifier>EISSN: 1618-2650</identifier><identifier>DOI: 10.1007/s00216-020-02881-5</identifier><identifier>PMID: 32897412</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adult ; Aged ; Algorithms ; Amino acids ; Analytical Chemistry ; Biochemistry ; Biomarkers, Tumor - metabolism ; Biomarkers, Tumor - urine ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Chromatography ; Data analysis ; Female ; Food Science ; Gas chromatography ; Gas Chromatography-Mass Spectrometry - methods ; Humans ; Information management ; Invasiveness ; Laboratory Medicine ; Lymphatic system ; Lymphocytes ; Lymphocytes T ; Lymphoma ; Lymphoma, Non-Hodgkin - metabolism ; Lymphoma, Non-Hodgkin - urine ; Male ; Mass spectrometry ; Mass spectroscopy ; Metabolites ; Metabolome ; Metabolomics - methods ; Middle Aged ; Model accuracy ; Monitoring/Environmental Analysis ; Multivariate analysis ; Neoplasia ; Neoplasms ; Non-Hodgkin's lymphoma ; Non-Hodgkin's lymphomas ; Organic acids ; Research Paper ; Scientific imaging ; Spectroscopy ; Spectrum analysis ; Statistical analysis ; Statistical methods ; Sugar ; Support vector machines ; Vitamins ; Volatile compounds</subject><ispartof>Analytical and bioanalytical chemistry, 2020-11, Vol.412 (27), p.7469-7480</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-1c798f95b8ce0a7791d5ef94d8cd7eb808b9e0f7ad7640ce9dd6e823502a90e33</citedby><cites>FETCH-LOGICAL-c442t-1c798f95b8ce0a7791d5ef94d8cd7eb808b9e0f7ad7640ce9dd6e823502a90e33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00216-020-02881-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00216-020-02881-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32897412$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bueno Duarte, Gustavo Henrique</creatorcontrib><creatorcontrib>de Piloto Fernandes, Anna Maria Alves</creatorcontrib><creatorcontrib>Silva, Alex Aparecido Rosini</creatorcontrib><creatorcontrib>Zamora-Obando, Hans R.</creatorcontrib><creatorcontrib>Amaral, Alan Gonçalves</creatorcontrib><creatorcontrib>de Sousa Mesquita, Alessandra</creatorcontrib><creatorcontrib>Schmidt-Filho, Jayr</creatorcontrib><creatorcontrib>Cordeiro de Lima, Vladmir C.</creatorcontrib><creatorcontrib>D’Almeida Costa, Felipe</creatorcontrib><creatorcontrib>Andrade, Victor Piana</creatorcontrib><creatorcontrib>Porcari, Andreia M.</creatorcontrib><creatorcontrib>Eberlin, Marcos Nogueira</creatorcontrib><creatorcontrib>Simionato, Ana Valéria Colnaghi</creatorcontrib><title>Gas chromatography-mass spectrometry untargeted profiling of non-Hodgkin’s lymphoma urinary metabolite markers</title><title>Analytical and bioanalytical chemistry</title><addtitle>Anal Bioanal Chem</addtitle><addtitle>Anal Bioanal Chem</addtitle><description>Non-Hodgkin’s lymphoma (NHL) is a cancer of the lymphatic system where the lymphoid and hematopoietic tissues are infiltrated by malignant neoplasms of B, T, and natural killer lymphocytes. Effective and less invasive methods for NHL screening are urgently needed. Herein, we report an untargeted gas chromatography-mass spectrometry (GC-MS) method to investigate metabolic changes in non-volatile derivatized compounds from urine samples of NHL patients ( N  = 15) and compare them to healthy controls ( N  = 34). Uni- and multivariate data analysis showed 18 endogenous metabolites, including amino acids and their metabolites, sugars, small organic acids, and vitamins, as statistically significant for group differentiation. A receiver operating characteristic curve (ROC) generated from a support vector machine (SVM) algorithm-based model achieved 0.998 of predictive accuracy, displaying the potential and relevance of GC-MS-detected urinary non-volatile compounds for predictive purposes. Furthermore, a specific panel of key metabolites was also evaluated, showing similar results. All in all, our results indicate that this robust GC-MS method is an effective screening tool for NHL diagnosis and it is able to highlight different pathways of the disease. Graphical Abstract</description><subject>Adult</subject><subject>Aged</subject><subject>Algorithms</subject><subject>Amino acids</subject><subject>Analytical Chemistry</subject><subject>Biochemistry</subject><subject>Biomarkers, Tumor - metabolism</subject><subject>Biomarkers, Tumor - urine</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chromatography</subject><subject>Data analysis</subject><subject>Female</subject><subject>Food Science</subject><subject>Gas chromatography</subject><subject>Gas Chromatography-Mass Spectrometry - methods</subject><subject>Humans</subject><subject>Information management</subject><subject>Invasiveness</subject><subject>Laboratory Medicine</subject><subject>Lymphatic system</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Lymphoma</subject><subject>Lymphoma, Non-Hodgkin - metabolism</subject><subject>Lymphoma, Non-Hodgkin - urine</subject><subject>Male</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Metabolites</subject><subject>Metabolome</subject><subject>Metabolomics - methods</subject><subject>Middle Aged</subject><subject>Model accuracy</subject><subject>Monitoring/Environmental Analysis</subject><subject>Multivariate analysis</subject><subject>Neoplasia</subject><subject>Neoplasms</subject><subject>Non-Hodgkin's lymphoma</subject><subject>Non-Hodgkin's lymphomas</subject><subject>Organic acids</subject><subject>Research Paper</subject><subject>Scientific imaging</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Sugar</subject><subject>Support vector machines</subject><subject>Vitamins</subject><subject>Volatile compounds</subject><issn>1618-2642</issn><issn>1618-2650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUFu3CAYha2qUZMmuUAXlaVusnH6g8HAMoqapFKkbpo1wvDb48QGF-zF7HKNXq8nKdNJE7WqKoRA8L2nB68o3hE4JwDiYwKgpKmAQp5Skoq_Ko5IQ2RFGw6vn_eMHhZvU7oHIFyS5k1xWFOpBCP0qJivTSrtJobJLKGPZt5sq8mkVKYZ7ZKPcYnbcvWLiT0u6Mo5hm4YB9-XoSt98NVNcP3D4H88fk_luJ3mTbYq1zh4k4VZbtowDguWk4kPGNNJcdCZMeHp03pc3F19-np5U91-uf58eXFbWcboUhErlOwUb6VFMEIo4jh2ijlpncBWgmwVQieMEw0Di8q5BiWtOVCjAOv6uDjb--bA31ZMi56GZHEcjcewJk0ZAwVE1DyjH_5C78MafU63oxTjnBD2QvVmRD34LizR2J2pvmhqwaQijcjU-T-oPBxOgw0e8-fhnwK6F9gYUorY6TkO-a-2moDe1az3Netcs_5Vs94lfv-UeG0ndM-S371moN4DKV_5HuPLk_5j-xM_PbRb</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Bueno Duarte, Gustavo Henrique</creator><creator>de Piloto Fernandes, Anna Maria Alves</creator><creator>Silva, Alex Aparecido Rosini</creator><creator>Zamora-Obando, Hans R.</creator><creator>Amaral, Alan Gonçalves</creator><creator>de Sousa Mesquita, Alessandra</creator><creator>Schmidt-Filho, Jayr</creator><creator>Cordeiro de Lima, Vladmir C.</creator><creator>D’Almeida Costa, Felipe</creator><creator>Andrade, Victor Piana</creator><creator>Porcari, Andreia M.</creator><creator>Eberlin, Marcos Nogueira</creator><creator>Simionato, Ana Valéria Colnaghi</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope></search><sort><creationdate>20201101</creationdate><title>Gas chromatography-mass spectrometry untargeted profiling of non-Hodgkin’s lymphoma urinary metabolite markers</title><author>Bueno Duarte, Gustavo Henrique ; de Piloto Fernandes, Anna Maria Alves ; Silva, Alex Aparecido Rosini ; Zamora-Obando, Hans R. ; Amaral, Alan Gonçalves ; de Sousa Mesquita, Alessandra ; Schmidt-Filho, Jayr ; Cordeiro de Lima, Vladmir C. ; D’Almeida Costa, Felipe ; Andrade, Victor Piana ; Porcari, Andreia M. ; Eberlin, Marcos Nogueira ; Simionato, Ana Valéria Colnaghi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-1c798f95b8ce0a7791d5ef94d8cd7eb808b9e0f7ad7640ce9dd6e823502a90e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Algorithms</topic><topic>Amino acids</topic><topic>Analytical Chemistry</topic><topic>Biochemistry</topic><topic>Biomarkers, Tumor - metabolism</topic><topic>Biomarkers, Tumor - urine</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chromatography</topic><topic>Data analysis</topic><topic>Female</topic><topic>Food Science</topic><topic>Gas chromatography</topic><topic>Gas Chromatography-Mass Spectrometry - methods</topic><topic>Humans</topic><topic>Information management</topic><topic>Invasiveness</topic><topic>Laboratory Medicine</topic><topic>Lymphatic system</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Lymphoma</topic><topic>Lymphoma, Non-Hodgkin - metabolism</topic><topic>Lymphoma, Non-Hodgkin - urine</topic><topic>Male</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Metabolites</topic><topic>Metabolome</topic><topic>Metabolomics - methods</topic><topic>Middle Aged</topic><topic>Model accuracy</topic><topic>Monitoring/Environmental Analysis</topic><topic>Multivariate analysis</topic><topic>Neoplasia</topic><topic>Neoplasms</topic><topic>Non-Hodgkin's lymphoma</topic><topic>Non-Hodgkin's lymphomas</topic><topic>Organic acids</topic><topic>Research Paper</topic><topic>Scientific imaging</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Sugar</topic><topic>Support vector machines</topic><topic>Vitamins</topic><topic>Volatile compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bueno Duarte, Gustavo Henrique</creatorcontrib><creatorcontrib>de Piloto Fernandes, Anna Maria Alves</creatorcontrib><creatorcontrib>Silva, Alex Aparecido Rosini</creatorcontrib><creatorcontrib>Zamora-Obando, Hans R.</creatorcontrib><creatorcontrib>Amaral, Alan Gonçalves</creatorcontrib><creatorcontrib>de Sousa Mesquita, Alessandra</creatorcontrib><creatorcontrib>Schmidt-Filho, Jayr</creatorcontrib><creatorcontrib>Cordeiro de Lima, Vladmir C.</creatorcontrib><creatorcontrib>D’Almeida Costa, Felipe</creatorcontrib><creatorcontrib>Andrade, Victor Piana</creatorcontrib><creatorcontrib>Porcari, Andreia M.</creatorcontrib><creatorcontrib>Eberlin, Marcos Nogueira</creatorcontrib><creatorcontrib>Simionato, Ana Valéria Colnaghi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical and bioanalytical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bueno Duarte, Gustavo Henrique</au><au>de Piloto Fernandes, Anna Maria Alves</au><au>Silva, Alex Aparecido Rosini</au><au>Zamora-Obando, Hans R.</au><au>Amaral, Alan Gonçalves</au><au>de Sousa Mesquita, Alessandra</au><au>Schmidt-Filho, Jayr</au><au>Cordeiro de Lima, Vladmir C.</au><au>D’Almeida Costa, Felipe</au><au>Andrade, Victor Piana</au><au>Porcari, Andreia M.</au><au>Eberlin, Marcos Nogueira</au><au>Simionato, Ana Valéria Colnaghi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gas chromatography-mass spectrometry untargeted profiling of non-Hodgkin’s lymphoma urinary metabolite markers</atitle><jtitle>Analytical and bioanalytical chemistry</jtitle><stitle>Anal Bioanal Chem</stitle><addtitle>Anal Bioanal Chem</addtitle><date>2020-11-01</date><risdate>2020</risdate><volume>412</volume><issue>27</issue><spage>7469</spage><epage>7480</epage><pages>7469-7480</pages><issn>1618-2642</issn><eissn>1618-2650</eissn><abstract>Non-Hodgkin’s lymphoma (NHL) is a cancer of the lymphatic system where the lymphoid and hematopoietic tissues are infiltrated by malignant neoplasms of B, T, and natural killer lymphocytes. Effective and less invasive methods for NHL screening are urgently needed. Herein, we report an untargeted gas chromatography-mass spectrometry (GC-MS) method to investigate metabolic changes in non-volatile derivatized compounds from urine samples of NHL patients ( N  = 15) and compare them to healthy controls ( N  = 34). Uni- and multivariate data analysis showed 18 endogenous metabolites, including amino acids and their metabolites, sugars, small organic acids, and vitamins, as statistically significant for group differentiation. A receiver operating characteristic curve (ROC) generated from a support vector machine (SVM) algorithm-based model achieved 0.998 of predictive accuracy, displaying the potential and relevance of GC-MS-detected urinary non-volatile compounds for predictive purposes. Furthermore, a specific panel of key metabolites was also evaluated, showing similar results. All in all, our results indicate that this robust GC-MS method is an effective screening tool for NHL diagnosis and it is able to highlight different pathways of the disease. Graphical Abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>32897412</pmid><doi>10.1007/s00216-020-02881-5</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1618-2642
ispartof Analytical and bioanalytical chemistry, 2020-11, Vol.412 (27), p.7469-7480
issn 1618-2642
1618-2650
language eng
recordid cdi_proquest_miscellaneous_2440901735
source MEDLINE; SpringerLink Journals (MCLS)
subjects Adult
Aged
Algorithms
Amino acids
Analytical Chemistry
Biochemistry
Biomarkers, Tumor - metabolism
Biomarkers, Tumor - urine
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Chromatography
Data analysis
Female
Food Science
Gas chromatography
Gas Chromatography-Mass Spectrometry - methods
Humans
Information management
Invasiveness
Laboratory Medicine
Lymphatic system
Lymphocytes
Lymphocytes T
Lymphoma
Lymphoma, Non-Hodgkin - metabolism
Lymphoma, Non-Hodgkin - urine
Male
Mass spectrometry
Mass spectroscopy
Metabolites
Metabolome
Metabolomics - methods
Middle Aged
Model accuracy
Monitoring/Environmental Analysis
Multivariate analysis
Neoplasia
Neoplasms
Non-Hodgkin's lymphoma
Non-Hodgkin's lymphomas
Organic acids
Research Paper
Scientific imaging
Spectroscopy
Spectrum analysis
Statistical analysis
Statistical methods
Sugar
Support vector machines
Vitamins
Volatile compounds
title Gas chromatography-mass spectrometry untargeted profiling of non-Hodgkin’s lymphoma urinary metabolite markers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A58%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gas%20chromatography-mass%20spectrometry%20untargeted%20profiling%20of%20non-Hodgkin%E2%80%99s%20lymphoma%20urinary%20metabolite%20markers&rft.jtitle=Analytical%20and%20bioanalytical%20chemistry&rft.au=Bueno%20Duarte,%20Gustavo%20Henrique&rft.date=2020-11-01&rft.volume=412&rft.issue=27&rft.spage=7469&rft.epage=7480&rft.pages=7469-7480&rft.issn=1618-2642&rft.eissn=1618-2650&rft_id=info:doi/10.1007/s00216-020-02881-5&rft_dat=%3Cgale_proqu%3EA637489167%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2449455114&rft_id=info:pmid/32897412&rft_galeid=A637489167&rfr_iscdi=true