Tight Junction Structure and Function Revisited

Tight junctions (TJs) are intercellular junctions critical for building the epithelial barrier and maintaining epithelial polarity. The claudin family of membrane proteins play central roles in TJ structure and function. However, recent findings have uncovered claudin-independent aspects of TJ struc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Trends in cell biology 2020-10, Vol.30 (10), p.805-817
Hauptverfasser: Otani, Tetsuhisa, Furuse, Mikio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 817
container_issue 10
container_start_page 805
container_title Trends in cell biology
container_volume 30
creator Otani, Tetsuhisa
Furuse, Mikio
description Tight junctions (TJs) are intercellular junctions critical for building the epithelial barrier and maintaining epithelial polarity. The claudin family of membrane proteins play central roles in TJ structure and function. However, recent findings have uncovered claudin-independent aspects of TJ structure and function, and additional players including junctional adhesion molecules (JAMs), membrane lipids, phase separation of the zonula occludens (ZO) family of scaffolding proteins, and mechanical force have been shown to play important roles in TJ structure and function. In this review, we discuss how these new findings have the potential to transform our understanding of TJ structure and function, and how the intricate network of TJ proteins and membrane lipids dynamically interact to drive TJ assembly. Tight junction strand formation and membrane apposition formation are differentially regulated.Claudins form charge-selective small pores, while junctional adhesion molecules regulate the formation of size-selective large pores.Tight junction proteins regulate epithelial polarity, although how tight junctions form a membrane fence remains unclear.Tight junction associated membrane proteins regulate tight junction assembly in conjunction with zonula occludens protein phase separation, membrane lipids, mechanical force, and polarity signaling proteins.
doi_str_mv 10.1016/j.tcb.2020.08.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2440667459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0962892420301513</els_id><sourcerecordid>2440667459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-45b027f7fc7422f560cc983f34df140f56b10cb75badc7ee9bf92f5e0c64116d3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AG8FL17anaRp0uJJFtcPFgRdz6FNJ5qy265JuuC_N8vqxYOngZfnHWYeQi4pZBSomHVZ0E3GgEEGZQbAj8iElrJKcyjLYzKBSrC0rBg_JWfedwAgGc0nZLay7x8heRp7HezQJ6_BjTqMDpO6b5PFb_yCO-ttwPacnJh67fHiZ07J2-JuNX9Il8_3j_PbZao54yHlRQNMGmm05IyZQoDWVZmbnLeGcohBQ0E3smjqVkvEqjFVxBC04JSKNp-S68PerRs-R_RBbazXuF7XPQ6jV4xzEELyooro1R-0G0bXx-siJSjkVNIyUvRAaTd479CorbOb2n0pCmqvUHUqKlR7hQpKFRXGzs2hg_HTnUWnvLbYa2ytQx1UO9h_2t-cCHeq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2461031718</pqid></control><display><type>article</type><title>Tight Junction Structure and Function Revisited</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Otani, Tetsuhisa ; Furuse, Mikio</creator><creatorcontrib>Otani, Tetsuhisa ; Furuse, Mikio</creatorcontrib><description>Tight junctions (TJs) are intercellular junctions critical for building the epithelial barrier and maintaining epithelial polarity. The claudin family of membrane proteins play central roles in TJ structure and function. However, recent findings have uncovered claudin-independent aspects of TJ structure and function, and additional players including junctional adhesion molecules (JAMs), membrane lipids, phase separation of the zonula occludens (ZO) family of scaffolding proteins, and mechanical force have been shown to play important roles in TJ structure and function. In this review, we discuss how these new findings have the potential to transform our understanding of TJ structure and function, and how the intricate network of TJ proteins and membrane lipids dynamically interact to drive TJ assembly. Tight junction strand formation and membrane apposition formation are differentially regulated.Claudins form charge-selective small pores, while junctional adhesion molecules regulate the formation of size-selective large pores.Tight junction proteins regulate epithelial polarity, although how tight junctions form a membrane fence remains unclear.Tight junction associated membrane proteins regulate tight junction assembly in conjunction with zonula occludens protein phase separation, membrane lipids, mechanical force, and polarity signaling proteins.</description><identifier>ISSN: 0962-8924</identifier><identifier>EISSN: 1879-3088</identifier><identifier>DOI: 10.1016/j.tcb.2020.08.004</identifier><language>eng</language><publisher>Cambridge: Elsevier Ltd</publisher><subject>epithelial barrier ; epithelial polarity ; Lipids ; mechanical force ; membrane microdomain ; Membrane proteins ; Membranes ; Phase separation ; Polarity ; Proteins ; Scaffolding ; Structure-function relationships ; tight junction ; Tight junctions</subject><ispartof>Trends in cell biology, 2020-10, Vol.30 (10), p.805-817</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-45b027f7fc7422f560cc983f34df140f56b10cb75badc7ee9bf92f5e0c64116d3</citedby><cites>FETCH-LOGICAL-c424t-45b027f7fc7422f560cc983f34df140f56b10cb75badc7ee9bf92f5e0c64116d3</cites><orcidid>0000-0002-2557-6722</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tcb.2020.08.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Otani, Tetsuhisa</creatorcontrib><creatorcontrib>Furuse, Mikio</creatorcontrib><title>Tight Junction Structure and Function Revisited</title><title>Trends in cell biology</title><description>Tight junctions (TJs) are intercellular junctions critical for building the epithelial barrier and maintaining epithelial polarity. The claudin family of membrane proteins play central roles in TJ structure and function. However, recent findings have uncovered claudin-independent aspects of TJ structure and function, and additional players including junctional adhesion molecules (JAMs), membrane lipids, phase separation of the zonula occludens (ZO) family of scaffolding proteins, and mechanical force have been shown to play important roles in TJ structure and function. In this review, we discuss how these new findings have the potential to transform our understanding of TJ structure and function, and how the intricate network of TJ proteins and membrane lipids dynamically interact to drive TJ assembly. Tight junction strand formation and membrane apposition formation are differentially regulated.Claudins form charge-selective small pores, while junctional adhesion molecules regulate the formation of size-selective large pores.Tight junction proteins regulate epithelial polarity, although how tight junctions form a membrane fence remains unclear.Tight junction associated membrane proteins regulate tight junction assembly in conjunction with zonula occludens protein phase separation, membrane lipids, mechanical force, and polarity signaling proteins.</description><subject>epithelial barrier</subject><subject>epithelial polarity</subject><subject>Lipids</subject><subject>mechanical force</subject><subject>membrane microdomain</subject><subject>Membrane proteins</subject><subject>Membranes</subject><subject>Phase separation</subject><subject>Polarity</subject><subject>Proteins</subject><subject>Scaffolding</subject><subject>Structure-function relationships</subject><subject>tight junction</subject><subject>Tight junctions</subject><issn>0962-8924</issn><issn>1879-3088</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AG8FL17anaRp0uJJFtcPFgRdz6FNJ5qy265JuuC_N8vqxYOngZfnHWYeQi4pZBSomHVZ0E3GgEEGZQbAj8iElrJKcyjLYzKBSrC0rBg_JWfedwAgGc0nZLay7x8heRp7HezQJ6_BjTqMDpO6b5PFb_yCO-ttwPacnJh67fHiZ07J2-JuNX9Il8_3j_PbZao54yHlRQNMGmm05IyZQoDWVZmbnLeGcohBQ0E3smjqVkvEqjFVxBC04JSKNp-S68PerRs-R_RBbazXuF7XPQ6jV4xzEELyooro1R-0G0bXx-siJSjkVNIyUvRAaTd479CorbOb2n0pCmqvUHUqKlR7hQpKFRXGzs2hg_HTnUWnvLbYa2ytQx1UO9h_2t-cCHeq</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Otani, Tetsuhisa</creator><creator>Furuse, Mikio</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2557-6722</orcidid></search><sort><creationdate>202010</creationdate><title>Tight Junction Structure and Function Revisited</title><author>Otani, Tetsuhisa ; Furuse, Mikio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-45b027f7fc7422f560cc983f34df140f56b10cb75badc7ee9bf92f5e0c64116d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>epithelial barrier</topic><topic>epithelial polarity</topic><topic>Lipids</topic><topic>mechanical force</topic><topic>membrane microdomain</topic><topic>Membrane proteins</topic><topic>Membranes</topic><topic>Phase separation</topic><topic>Polarity</topic><topic>Proteins</topic><topic>Scaffolding</topic><topic>Structure-function relationships</topic><topic>tight junction</topic><topic>Tight junctions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Otani, Tetsuhisa</creatorcontrib><creatorcontrib>Furuse, Mikio</creatorcontrib><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Trends in cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Otani, Tetsuhisa</au><au>Furuse, Mikio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tight Junction Structure and Function Revisited</atitle><jtitle>Trends in cell biology</jtitle><date>2020-10</date><risdate>2020</risdate><volume>30</volume><issue>10</issue><spage>805</spage><epage>817</epage><pages>805-817</pages><issn>0962-8924</issn><eissn>1879-3088</eissn><abstract>Tight junctions (TJs) are intercellular junctions critical for building the epithelial barrier and maintaining epithelial polarity. The claudin family of membrane proteins play central roles in TJ structure and function. However, recent findings have uncovered claudin-independent aspects of TJ structure and function, and additional players including junctional adhesion molecules (JAMs), membrane lipids, phase separation of the zonula occludens (ZO) family of scaffolding proteins, and mechanical force have been shown to play important roles in TJ structure and function. In this review, we discuss how these new findings have the potential to transform our understanding of TJ structure and function, and how the intricate network of TJ proteins and membrane lipids dynamically interact to drive TJ assembly. Tight junction strand formation and membrane apposition formation are differentially regulated.Claudins form charge-selective small pores, while junctional adhesion molecules regulate the formation of size-selective large pores.Tight junction proteins regulate epithelial polarity, although how tight junctions form a membrane fence remains unclear.Tight junction associated membrane proteins regulate tight junction assembly in conjunction with zonula occludens protein phase separation, membrane lipids, mechanical force, and polarity signaling proteins.</abstract><cop>Cambridge</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.tcb.2020.08.004</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2557-6722</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0962-8924
ispartof Trends in cell biology, 2020-10, Vol.30 (10), p.805-817
issn 0962-8924
1879-3088
language eng
recordid cdi_proquest_miscellaneous_2440667459
source ScienceDirect Journals (5 years ago - present)
subjects epithelial barrier
epithelial polarity
Lipids
mechanical force
membrane microdomain
Membrane proteins
Membranes
Phase separation
Polarity
Proteins
Scaffolding
Structure-function relationships
tight junction
Tight junctions
title Tight Junction Structure and Function Revisited
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T22%3A47%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tight%20Junction%20Structure%20and%20Function%20Revisited&rft.jtitle=Trends%20in%20cell%20biology&rft.au=Otani,%20Tetsuhisa&rft.date=2020-10&rft.volume=30&rft.issue=10&rft.spage=805&rft.epage=817&rft.pages=805-817&rft.issn=0962-8924&rft.eissn=1879-3088&rft_id=info:doi/10.1016/j.tcb.2020.08.004&rft_dat=%3Cproquest_cross%3E2440667459%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2461031718&rft_id=info:pmid/&rft_els_id=S0962892420301513&rfr_iscdi=true