Tight Junction Structure and Function Revisited
Tight junctions (TJs) are intercellular junctions critical for building the epithelial barrier and maintaining epithelial polarity. The claudin family of membrane proteins play central roles in TJ structure and function. However, recent findings have uncovered claudin-independent aspects of TJ struc...
Gespeichert in:
Veröffentlicht in: | Trends in cell biology 2020-10, Vol.30 (10), p.805-817 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 817 |
---|---|
container_issue | 10 |
container_start_page | 805 |
container_title | Trends in cell biology |
container_volume | 30 |
creator | Otani, Tetsuhisa Furuse, Mikio |
description | Tight junctions (TJs) are intercellular junctions critical for building the epithelial barrier and maintaining epithelial polarity. The claudin family of membrane proteins play central roles in TJ structure and function. However, recent findings have uncovered claudin-independent aspects of TJ structure and function, and additional players including junctional adhesion molecules (JAMs), membrane lipids, phase separation of the zonula occludens (ZO) family of scaffolding proteins, and mechanical force have been shown to play important roles in TJ structure and function. In this review, we discuss how these new findings have the potential to transform our understanding of TJ structure and function, and how the intricate network of TJ proteins and membrane lipids dynamically interact to drive TJ assembly.
Tight junction strand formation and membrane apposition formation are differentially regulated.Claudins form charge-selective small pores, while junctional adhesion molecules regulate the formation of size-selective large pores.Tight junction proteins regulate epithelial polarity, although how tight junctions form a membrane fence remains unclear.Tight junction associated membrane proteins regulate tight junction assembly in conjunction with zonula occludens protein phase separation, membrane lipids, mechanical force, and polarity signaling proteins. |
doi_str_mv | 10.1016/j.tcb.2020.08.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2440667459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0962892420301513</els_id><sourcerecordid>2440667459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-45b027f7fc7422f560cc983f34df140f56b10cb75badc7ee9bf92f5e0c64116d3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AG8FL17anaRp0uJJFtcPFgRdz6FNJ5qy265JuuC_N8vqxYOngZfnHWYeQi4pZBSomHVZ0E3GgEEGZQbAj8iElrJKcyjLYzKBSrC0rBg_JWfedwAgGc0nZLay7x8heRp7HezQJ6_BjTqMDpO6b5PFb_yCO-ttwPacnJh67fHiZ07J2-JuNX9Il8_3j_PbZao54yHlRQNMGmm05IyZQoDWVZmbnLeGcohBQ0E3smjqVkvEqjFVxBC04JSKNp-S68PerRs-R_RBbazXuF7XPQ6jV4xzEELyooro1R-0G0bXx-siJSjkVNIyUvRAaTd479CorbOb2n0pCmqvUHUqKlR7hQpKFRXGzs2hg_HTnUWnvLbYa2ytQx1UO9h_2t-cCHeq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2461031718</pqid></control><display><type>article</type><title>Tight Junction Structure and Function Revisited</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Otani, Tetsuhisa ; Furuse, Mikio</creator><creatorcontrib>Otani, Tetsuhisa ; Furuse, Mikio</creatorcontrib><description>Tight junctions (TJs) are intercellular junctions critical for building the epithelial barrier and maintaining epithelial polarity. The claudin family of membrane proteins play central roles in TJ structure and function. However, recent findings have uncovered claudin-independent aspects of TJ structure and function, and additional players including junctional adhesion molecules (JAMs), membrane lipids, phase separation of the zonula occludens (ZO) family of scaffolding proteins, and mechanical force have been shown to play important roles in TJ structure and function. In this review, we discuss how these new findings have the potential to transform our understanding of TJ structure and function, and how the intricate network of TJ proteins and membrane lipids dynamically interact to drive TJ assembly.
Tight junction strand formation and membrane apposition formation are differentially regulated.Claudins form charge-selective small pores, while junctional adhesion molecules regulate the formation of size-selective large pores.Tight junction proteins regulate epithelial polarity, although how tight junctions form a membrane fence remains unclear.Tight junction associated membrane proteins regulate tight junction assembly in conjunction with zonula occludens protein phase separation, membrane lipids, mechanical force, and polarity signaling proteins.</description><identifier>ISSN: 0962-8924</identifier><identifier>EISSN: 1879-3088</identifier><identifier>DOI: 10.1016/j.tcb.2020.08.004</identifier><language>eng</language><publisher>Cambridge: Elsevier Ltd</publisher><subject>epithelial barrier ; epithelial polarity ; Lipids ; mechanical force ; membrane microdomain ; Membrane proteins ; Membranes ; Phase separation ; Polarity ; Proteins ; Scaffolding ; Structure-function relationships ; tight junction ; Tight junctions</subject><ispartof>Trends in cell biology, 2020-10, Vol.30 (10), p.805-817</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-45b027f7fc7422f560cc983f34df140f56b10cb75badc7ee9bf92f5e0c64116d3</citedby><cites>FETCH-LOGICAL-c424t-45b027f7fc7422f560cc983f34df140f56b10cb75badc7ee9bf92f5e0c64116d3</cites><orcidid>0000-0002-2557-6722</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tcb.2020.08.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Otani, Tetsuhisa</creatorcontrib><creatorcontrib>Furuse, Mikio</creatorcontrib><title>Tight Junction Structure and Function Revisited</title><title>Trends in cell biology</title><description>Tight junctions (TJs) are intercellular junctions critical for building the epithelial barrier and maintaining epithelial polarity. The claudin family of membrane proteins play central roles in TJ structure and function. However, recent findings have uncovered claudin-independent aspects of TJ structure and function, and additional players including junctional adhesion molecules (JAMs), membrane lipids, phase separation of the zonula occludens (ZO) family of scaffolding proteins, and mechanical force have been shown to play important roles in TJ structure and function. In this review, we discuss how these new findings have the potential to transform our understanding of TJ structure and function, and how the intricate network of TJ proteins and membrane lipids dynamically interact to drive TJ assembly.
Tight junction strand formation and membrane apposition formation are differentially regulated.Claudins form charge-selective small pores, while junctional adhesion molecules regulate the formation of size-selective large pores.Tight junction proteins regulate epithelial polarity, although how tight junctions form a membrane fence remains unclear.Tight junction associated membrane proteins regulate tight junction assembly in conjunction with zonula occludens protein phase separation, membrane lipids, mechanical force, and polarity signaling proteins.</description><subject>epithelial barrier</subject><subject>epithelial polarity</subject><subject>Lipids</subject><subject>mechanical force</subject><subject>membrane microdomain</subject><subject>Membrane proteins</subject><subject>Membranes</subject><subject>Phase separation</subject><subject>Polarity</subject><subject>Proteins</subject><subject>Scaffolding</subject><subject>Structure-function relationships</subject><subject>tight junction</subject><subject>Tight junctions</subject><issn>0962-8924</issn><issn>1879-3088</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AG8FL17anaRp0uJJFtcPFgRdz6FNJ5qy265JuuC_N8vqxYOngZfnHWYeQi4pZBSomHVZ0E3GgEEGZQbAj8iElrJKcyjLYzKBSrC0rBg_JWfedwAgGc0nZLay7x8heRp7HezQJ6_BjTqMDpO6b5PFb_yCO-ttwPacnJh67fHiZ07J2-JuNX9Il8_3j_PbZao54yHlRQNMGmm05IyZQoDWVZmbnLeGcohBQ0E3smjqVkvEqjFVxBC04JSKNp-S68PerRs-R_RBbazXuF7XPQ6jV4xzEELyooro1R-0G0bXx-siJSjkVNIyUvRAaTd479CorbOb2n0pCmqvUHUqKlR7hQpKFRXGzs2hg_HTnUWnvLbYa2ytQx1UO9h_2t-cCHeq</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Otani, Tetsuhisa</creator><creator>Furuse, Mikio</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2557-6722</orcidid></search><sort><creationdate>202010</creationdate><title>Tight Junction Structure and Function Revisited</title><author>Otani, Tetsuhisa ; Furuse, Mikio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-45b027f7fc7422f560cc983f34df140f56b10cb75badc7ee9bf92f5e0c64116d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>epithelial barrier</topic><topic>epithelial polarity</topic><topic>Lipids</topic><topic>mechanical force</topic><topic>membrane microdomain</topic><topic>Membrane proteins</topic><topic>Membranes</topic><topic>Phase separation</topic><topic>Polarity</topic><topic>Proteins</topic><topic>Scaffolding</topic><topic>Structure-function relationships</topic><topic>tight junction</topic><topic>Tight junctions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Otani, Tetsuhisa</creatorcontrib><creatorcontrib>Furuse, Mikio</creatorcontrib><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Trends in cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Otani, Tetsuhisa</au><au>Furuse, Mikio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tight Junction Structure and Function Revisited</atitle><jtitle>Trends in cell biology</jtitle><date>2020-10</date><risdate>2020</risdate><volume>30</volume><issue>10</issue><spage>805</spage><epage>817</epage><pages>805-817</pages><issn>0962-8924</issn><eissn>1879-3088</eissn><abstract>Tight junctions (TJs) are intercellular junctions critical for building the epithelial barrier and maintaining epithelial polarity. The claudin family of membrane proteins play central roles in TJ structure and function. However, recent findings have uncovered claudin-independent aspects of TJ structure and function, and additional players including junctional adhesion molecules (JAMs), membrane lipids, phase separation of the zonula occludens (ZO) family of scaffolding proteins, and mechanical force have been shown to play important roles in TJ structure and function. In this review, we discuss how these new findings have the potential to transform our understanding of TJ structure and function, and how the intricate network of TJ proteins and membrane lipids dynamically interact to drive TJ assembly.
Tight junction strand formation and membrane apposition formation are differentially regulated.Claudins form charge-selective small pores, while junctional adhesion molecules regulate the formation of size-selective large pores.Tight junction proteins regulate epithelial polarity, although how tight junctions form a membrane fence remains unclear.Tight junction associated membrane proteins regulate tight junction assembly in conjunction with zonula occludens protein phase separation, membrane lipids, mechanical force, and polarity signaling proteins.</abstract><cop>Cambridge</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.tcb.2020.08.004</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2557-6722</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-8924 |
ispartof | Trends in cell biology, 2020-10, Vol.30 (10), p.805-817 |
issn | 0962-8924 1879-3088 |
language | eng |
recordid | cdi_proquest_miscellaneous_2440667459 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | epithelial barrier epithelial polarity Lipids mechanical force membrane microdomain Membrane proteins Membranes Phase separation Polarity Proteins Scaffolding Structure-function relationships tight junction Tight junctions |
title | Tight Junction Structure and Function Revisited |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T22%3A47%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tight%20Junction%20Structure%20and%20Function%20Revisited&rft.jtitle=Trends%20in%20cell%20biology&rft.au=Otani,%20Tetsuhisa&rft.date=2020-10&rft.volume=30&rft.issue=10&rft.spage=805&rft.epage=817&rft.pages=805-817&rft.issn=0962-8924&rft.eissn=1879-3088&rft_id=info:doi/10.1016/j.tcb.2020.08.004&rft_dat=%3Cproquest_cross%3E2440667459%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2461031718&rft_id=info:pmid/&rft_els_id=S0962892420301513&rfr_iscdi=true |