A class of low‐cost alternatives to kifunensine for increasing high mannose N‐linked glycosylation for monoclonal antibody production in Chinese hamster ovary cells
N‐linked glycosylation of therapeutic monoclonal antibodies is an important product quality attribute for drug safety and efficacy. An increase in the percent of high mannose N‐linked glycosylation may be required for drug efficacy or to match the glycosylation profile of the innovator drug during t...
Gespeichert in:
Veröffentlicht in: | Biotechnology progress 2021-01, Vol.37 (1), p.e3076-n/a |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 1 |
container_start_page | e3076 |
container_title | Biotechnology progress |
container_volume | 37 |
creator | Brantley, Timothy J. Mitchelson, Fernie G. Khattak, Sarwat F. |
description | N‐linked glycosylation of therapeutic monoclonal antibodies is an important product quality attribute for drug safety and efficacy. An increase in the percent of high mannose N‐linked glycosylation may be required for drug efficacy or to match the glycosylation profile of the innovator drug during the development of a biosimilar. In this study, the addition of several chemical additives to a cell culture process resulted in high mannose N‐glycans on monoclonal antibodies produced by Chinese hamster ovary (CHO) cells without impacting cell culture performance. The additives, which include known mannosidase inhibitors (kifunensine and deoxymannojirimycin) as well as novel inhibitors (tris, bis–tris, and 1‐amino‐1‐methyl‐1,3‐propanediol), contain one similar molecular structure: 2‐amino‐1,3‐propanediol, commonly referred to as serinol. The shared chemical structure provides insight into the binding and inhibition of mannosidase in CHO cells. One of the novel inhibitors, tris, is safer compared to kifunensine, 35x as cost‐effective, and stable at room temperature. In addition, tris and bis–tris provide multiple low‐cost alternatives to kifunensine for manipulating glycosylation in monoclonal antibody production in a cell culture process with minimal impact to productivity or cell health. |
doi_str_mv | 10.1002/btpr.3076 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2440471477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2440471477</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3716-5d9dc9bfc693255ab4f265b420f902ba75593632c1aa94589f87290bda3d4a6d3</originalsourceid><addsrcrecordid>eNp1kU1u1DAYhi0EotPCggsgS2zoIq3jv9jLdsSfVAFCZR05jj3j1rEHO2mVHUfgGJyLk-DMFBZIrKxPer7Hr_0C8KJGZzVC-Lwbd-mMoIY_AquaYVRxRMhjsBIN41UjiTgCxznfIIQE4vgpOCJYCIGZXIGfF1B7lTOMFvp4_-v7Dx3zCJUfTQpqdHcmwzHCW2enYEJ2wUAbE3RBJ6PKuIFbt9nCQYUQs4Efi8C7cGt6uPFzUc2-SGLYLw0xRO1jUB6qMLou9jPcpdhPeo-4ANfbckHRbNWQSwAY71SaoTbe52fgiVU-m-cP5wn4-vbN9fp9dfXp3Yf1xVWlSVPzivWy17KzmkuCGVMdtZizjmJkJcKdahiThBOsa6UkZUJa0WCJul6RnirekxPw-uAtyb5NJo_t4PKSQAUTp9xiShFtato0BX31D3oTp_JrfqFkLTjlXBTq9EDpFHNOxra75IbyrrZG7VJfu9TXLvUV9uWDceoG0_8l__RVgPMDcO-8mf9vai-vP3_ZK38DgJiqbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2491864668</pqid></control><display><type>article</type><title>A class of low‐cost alternatives to kifunensine for increasing high mannose N‐linked glycosylation for monoclonal antibody production in Chinese hamster ovary cells</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Brantley, Timothy J. ; Mitchelson, Fernie G. ; Khattak, Sarwat F.</creator><creatorcontrib>Brantley, Timothy J. ; Mitchelson, Fernie G. ; Khattak, Sarwat F.</creatorcontrib><description>N‐linked glycosylation of therapeutic monoclonal antibodies is an important product quality attribute for drug safety and efficacy. An increase in the percent of high mannose N‐linked glycosylation may be required for drug efficacy or to match the glycosylation profile of the innovator drug during the development of a biosimilar. In this study, the addition of several chemical additives to a cell culture process resulted in high mannose N‐glycans on monoclonal antibodies produced by Chinese hamster ovary (CHO) cells without impacting cell culture performance. The additives, which include known mannosidase inhibitors (kifunensine and deoxymannojirimycin) as well as novel inhibitors (tris, bis–tris, and 1‐amino‐1‐methyl‐1,3‐propanediol), contain one similar molecular structure: 2‐amino‐1,3‐propanediol, commonly referred to as serinol. The shared chemical structure provides insight into the binding and inhibition of mannosidase in CHO cells. One of the novel inhibitors, tris, is safer compared to kifunensine, 35x as cost‐effective, and stable at room temperature. In addition, tris and bis–tris provide multiple low‐cost alternatives to kifunensine for manipulating glycosylation in monoclonal antibody production in a cell culture process with minimal impact to productivity or cell health.</description><identifier>ISSN: 8756-7938</identifier><identifier>EISSN: 1520-6033</identifier><identifier>DOI: 10.1002/btpr.3076</identifier><identifier>PMID: 32888259</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Additives ; Alkaloids - pharmacology ; Animals ; Antibodies, Monoclonal - biosynthesis ; Antibodies, Monoclonal - immunology ; Antibody Formation ; Cell culture ; Chinese hamster ovary cells ; CHO Cells ; Cricetinae ; Cricetulus ; Enzyme Inhibitors - pharmacology ; Glycosylation ; high mannose ; IgG ; inhibitor ; Inhibitors ; Mannose ; Mannose - metabolism ; Mannosidase ; Mannosidases - antagonists & inhibitors ; Molecular structure ; Monoclonal antibodies ; Ovaries ; Pharmacovigilance ; Polysaccharides ; Polysaccharides - chemistry ; Product safety ; protein glycosylation ; Quality management ; Room temperature ; therapeutic antibodies ; Toxicity</subject><ispartof>Biotechnology progress, 2021-01, Vol.37 (1), p.e3076-n/a</ispartof><rights>2020 American Institute of Chemical Engineers</rights><rights>2020 American Institute of Chemical Engineers.</rights><rights>2021 American Institute of Chemical Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3716-5d9dc9bfc693255ab4f265b420f902ba75593632c1aa94589f87290bda3d4a6d3</citedby><cites>FETCH-LOGICAL-c3716-5d9dc9bfc693255ab4f265b420f902ba75593632c1aa94589f87290bda3d4a6d3</cites><orcidid>0000-0003-3057-6513</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbtpr.3076$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbtpr.3076$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32888259$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brantley, Timothy J.</creatorcontrib><creatorcontrib>Mitchelson, Fernie G.</creatorcontrib><creatorcontrib>Khattak, Sarwat F.</creatorcontrib><title>A class of low‐cost alternatives to kifunensine for increasing high mannose N‐linked glycosylation for monoclonal antibody production in Chinese hamster ovary cells</title><title>Biotechnology progress</title><addtitle>Biotechnol Prog</addtitle><description>N‐linked glycosylation of therapeutic monoclonal antibodies is an important product quality attribute for drug safety and efficacy. An increase in the percent of high mannose N‐linked glycosylation may be required for drug efficacy or to match the glycosylation profile of the innovator drug during the development of a biosimilar. In this study, the addition of several chemical additives to a cell culture process resulted in high mannose N‐glycans on monoclonal antibodies produced by Chinese hamster ovary (CHO) cells without impacting cell culture performance. The additives, which include known mannosidase inhibitors (kifunensine and deoxymannojirimycin) as well as novel inhibitors (tris, bis–tris, and 1‐amino‐1‐methyl‐1,3‐propanediol), contain one similar molecular structure: 2‐amino‐1,3‐propanediol, commonly referred to as serinol. The shared chemical structure provides insight into the binding and inhibition of mannosidase in CHO cells. One of the novel inhibitors, tris, is safer compared to kifunensine, 35x as cost‐effective, and stable at room temperature. In addition, tris and bis–tris provide multiple low‐cost alternatives to kifunensine for manipulating glycosylation in monoclonal antibody production in a cell culture process with minimal impact to productivity or cell health.</description><subject>Additives</subject><subject>Alkaloids - pharmacology</subject><subject>Animals</subject><subject>Antibodies, Monoclonal - biosynthesis</subject><subject>Antibodies, Monoclonal - immunology</subject><subject>Antibody Formation</subject><subject>Cell culture</subject><subject>Chinese hamster ovary cells</subject><subject>CHO Cells</subject><subject>Cricetinae</subject><subject>Cricetulus</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Glycosylation</subject><subject>high mannose</subject><subject>IgG</subject><subject>inhibitor</subject><subject>Inhibitors</subject><subject>Mannose</subject><subject>Mannose - metabolism</subject><subject>Mannosidase</subject><subject>Mannosidases - antagonists & inhibitors</subject><subject>Molecular structure</subject><subject>Monoclonal antibodies</subject><subject>Ovaries</subject><subject>Pharmacovigilance</subject><subject>Polysaccharides</subject><subject>Polysaccharides - chemistry</subject><subject>Product safety</subject><subject>protein glycosylation</subject><subject>Quality management</subject><subject>Room temperature</subject><subject>therapeutic antibodies</subject><subject>Toxicity</subject><issn>8756-7938</issn><issn>1520-6033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU1u1DAYhi0EotPCggsgS2zoIq3jv9jLdsSfVAFCZR05jj3j1rEHO2mVHUfgGJyLk-DMFBZIrKxPer7Hr_0C8KJGZzVC-Lwbd-mMoIY_AquaYVRxRMhjsBIN41UjiTgCxznfIIQE4vgpOCJYCIGZXIGfF1B7lTOMFvp4_-v7Dx3zCJUfTQpqdHcmwzHCW2enYEJ2wUAbE3RBJ6PKuIFbt9nCQYUQs4Efi8C7cGt6uPFzUc2-SGLYLw0xRO1jUB6qMLou9jPcpdhPeo-4ANfbckHRbNWQSwAY71SaoTbe52fgiVU-m-cP5wn4-vbN9fp9dfXp3Yf1xVWlSVPzivWy17KzmkuCGVMdtZizjmJkJcKdahiThBOsa6UkZUJa0WCJul6RnirekxPw-uAtyb5NJo_t4PKSQAUTp9xiShFtato0BX31D3oTp_JrfqFkLTjlXBTq9EDpFHNOxra75IbyrrZG7VJfu9TXLvUV9uWDceoG0_8l__RVgPMDcO-8mf9vai-vP3_ZK38DgJiqbA</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Brantley, Timothy J.</creator><creator>Mitchelson, Fernie G.</creator><creator>Khattak, Sarwat F.</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3057-6513</orcidid></search><sort><creationdate>202101</creationdate><title>A class of low‐cost alternatives to kifunensine for increasing high mannose N‐linked glycosylation for monoclonal antibody production in Chinese hamster ovary cells</title><author>Brantley, Timothy J. ; Mitchelson, Fernie G. ; Khattak, Sarwat F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3716-5d9dc9bfc693255ab4f265b420f902ba75593632c1aa94589f87290bda3d4a6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Additives</topic><topic>Alkaloids - pharmacology</topic><topic>Animals</topic><topic>Antibodies, Monoclonal - biosynthesis</topic><topic>Antibodies, Monoclonal - immunology</topic><topic>Antibody Formation</topic><topic>Cell culture</topic><topic>Chinese hamster ovary cells</topic><topic>CHO Cells</topic><topic>Cricetinae</topic><topic>Cricetulus</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Glycosylation</topic><topic>high mannose</topic><topic>IgG</topic><topic>inhibitor</topic><topic>Inhibitors</topic><topic>Mannose</topic><topic>Mannose - metabolism</topic><topic>Mannosidase</topic><topic>Mannosidases - antagonists & inhibitors</topic><topic>Molecular structure</topic><topic>Monoclonal antibodies</topic><topic>Ovaries</topic><topic>Pharmacovigilance</topic><topic>Polysaccharides</topic><topic>Polysaccharides - chemistry</topic><topic>Product safety</topic><topic>protein glycosylation</topic><topic>Quality management</topic><topic>Room temperature</topic><topic>therapeutic antibodies</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brantley, Timothy J.</creatorcontrib><creatorcontrib>Mitchelson, Fernie G.</creatorcontrib><creatorcontrib>Khattak, Sarwat F.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology progress</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brantley, Timothy J.</au><au>Mitchelson, Fernie G.</au><au>Khattak, Sarwat F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A class of low‐cost alternatives to kifunensine for increasing high mannose N‐linked glycosylation for monoclonal antibody production in Chinese hamster ovary cells</atitle><jtitle>Biotechnology progress</jtitle><addtitle>Biotechnol Prog</addtitle><date>2021-01</date><risdate>2021</risdate><volume>37</volume><issue>1</issue><spage>e3076</spage><epage>n/a</epage><pages>e3076-n/a</pages><issn>8756-7938</issn><eissn>1520-6033</eissn><abstract>N‐linked glycosylation of therapeutic monoclonal antibodies is an important product quality attribute for drug safety and efficacy. An increase in the percent of high mannose N‐linked glycosylation may be required for drug efficacy or to match the glycosylation profile of the innovator drug during the development of a biosimilar. In this study, the addition of several chemical additives to a cell culture process resulted in high mannose N‐glycans on monoclonal antibodies produced by Chinese hamster ovary (CHO) cells without impacting cell culture performance. The additives, which include known mannosidase inhibitors (kifunensine and deoxymannojirimycin) as well as novel inhibitors (tris, bis–tris, and 1‐amino‐1‐methyl‐1,3‐propanediol), contain one similar molecular structure: 2‐amino‐1,3‐propanediol, commonly referred to as serinol. The shared chemical structure provides insight into the binding and inhibition of mannosidase in CHO cells. One of the novel inhibitors, tris, is safer compared to kifunensine, 35x as cost‐effective, and stable at room temperature. In addition, tris and bis–tris provide multiple low‐cost alternatives to kifunensine for manipulating glycosylation in monoclonal antibody production in a cell culture process with minimal impact to productivity or cell health.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>32888259</pmid><doi>10.1002/btpr.3076</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3057-6513</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 8756-7938 |
ispartof | Biotechnology progress, 2021-01, Vol.37 (1), p.e3076-n/a |
issn | 8756-7938 1520-6033 |
language | eng |
recordid | cdi_proquest_miscellaneous_2440471477 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Additives Alkaloids - pharmacology Animals Antibodies, Monoclonal - biosynthesis Antibodies, Monoclonal - immunology Antibody Formation Cell culture Chinese hamster ovary cells CHO Cells Cricetinae Cricetulus Enzyme Inhibitors - pharmacology Glycosylation high mannose IgG inhibitor Inhibitors Mannose Mannose - metabolism Mannosidase Mannosidases - antagonists & inhibitors Molecular structure Monoclonal antibodies Ovaries Pharmacovigilance Polysaccharides Polysaccharides - chemistry Product safety protein glycosylation Quality management Room temperature therapeutic antibodies Toxicity |
title | A class of low‐cost alternatives to kifunensine for increasing high mannose N‐linked glycosylation for monoclonal antibody production in Chinese hamster ovary cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T19%3A05%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20class%20of%20low%E2%80%90cost%20alternatives%20to%20kifunensine%20for%20increasing%20high%20mannose%20N%E2%80%90linked%20glycosylation%20for%20monoclonal%20antibody%20production%20in%20Chinese%20hamster%20ovary%20cells&rft.jtitle=Biotechnology%20progress&rft.au=Brantley,%20Timothy%20J.&rft.date=2021-01&rft.volume=37&rft.issue=1&rft.spage=e3076&rft.epage=n/a&rft.pages=e3076-n/a&rft.issn=8756-7938&rft.eissn=1520-6033&rft_id=info:doi/10.1002/btpr.3076&rft_dat=%3Cproquest_cross%3E2440471477%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2491864668&rft_id=info:pmid/32888259&rfr_iscdi=true |