Mortality Risk Profiling of Staphylococcus aureus Bacteremia by Multi-omic Serum Analysis Reveals Early Predictive and Pathogenic Signatures

Staphylococcus aureus bacteremia (SaB) causes significant disease in humans, carrying mortality rates of ∼25%. The ability to rapidly predict SaB patient responses and guide personalized treatment regimens could reduce mortality. Here, we present a resource of SaB prognostic biomarkers. Integrating...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell 2020-09, Vol.182 (5), p.1311-1327.e14
Hauptverfasser: Wozniak, Jacob M., Mills, Robert H., Olson, Joshua, Caldera, J.R., Sepich-Poore, Gregory D., Carrillo-Terrazas, Marvic, Tsai, Chih-Ming, Vargas, Fernando, Knight, Rob, Dorrestein, Pieter C., Liu, George Y., Nizet, Victor, Sakoulas, George, Rose, Warren, Gonzalez, David J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1327.e14
container_issue 5
container_start_page 1311
container_title Cell
container_volume 182
creator Wozniak, Jacob M.
Mills, Robert H.
Olson, Joshua
Caldera, J.R.
Sepich-Poore, Gregory D.
Carrillo-Terrazas, Marvic
Tsai, Chih-Ming
Vargas, Fernando
Knight, Rob
Dorrestein, Pieter C.
Liu, George Y.
Nizet, Victor
Sakoulas, George
Rose, Warren
Gonzalez, David J.
description Staphylococcus aureus bacteremia (SaB) causes significant disease in humans, carrying mortality rates of ∼25%. The ability to rapidly predict SaB patient responses and guide personalized treatment regimens could reduce mortality. Here, we present a resource of SaB prognostic biomarkers. Integrating proteomic and metabolomic techniques enabled the identification of >10,000 features from >200 serum samples collected upon clinical presentation. We interrogated the complexity of serum using multiple computational strategies, which provided a comprehensive view of the early host response to infection. Our biomarkers exceed the predictive capabilities of those previously reported, particularly when used in combination. Last, we validated the biological contribution of mortality-associated pathways using a murine model of SaB. Our findings represent a starting point for the development of a prognostic test for identifying high-risk patients at a time early enough to trigger intensive monitoring and interventions. [Display omitted] •Multi-omic analysis of S. aureus bacteremia serum reveals early mortality signatures•Modified peptides demonstrate enhanced predictive capabilities•Cytokine inference predicts major underlying signaling networks•Host metabolic responses represent actionable therapeutic targets Multi-omic analysis of the serum of patients with Staphylococcus aureus bacteremia identified features with predictive value to determine disease mortality and guide treatment decisions.
doi_str_mv 10.1016/j.cell.2020.07.040
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2440471457</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S009286742030948X</els_id><sourcerecordid>2440471457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-3e0631d53fdb6c8f38498838c64cfeb6218dd28054cec852d30123c8e1299bc13</originalsourceid><addsrcrecordid>eNp9kcFu1DAURS0EokPLD7BAXrJJeHacxJHYlKoFpFZUbVlbjvMy9ZDEg-2MlH_go3E0bZes3uaeI717CfnAIGfAqs-73OAw5Bw45FDnIOAV2TBo6kywmr8mG4CGZ7KqxQl5F8IOAGRZlm_JScGllKIpN-TvjfNRDzYu9M6G3_TWu94OdtpS19P7qPePy-CMM2YOVM8e0_mqTUSPo9W0XejNPESbudEaeo9-Hun5pIcl2EDv8IB6CPRS-2FJYuysifaAVE8dvdXx0W1xWjG7nXRM7nBG3vSJwPdP95T8urp8uPieXf_89uPi_DozAiBmBUJVsK4s-q6tjOyL9IqUhTSVMD22FWey67iEUhg0suRdAYwXRiLjTdMaVpyST0fv3rs_M4aoRhvWLvWEbg6KCwGiZqKsU5Qfo8a7EDz2au_tqP2iGKh1BbVTK6nWFRTUKq2QoI9P_rkdsXtBnmtPgS_HAKYvDxa9CsbiZFJFHk1UnbP_8_8DyaGa-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440471457</pqid></control><display><type>article</type><title>Mortality Risk Profiling of Staphylococcus aureus Bacteremia by Multi-omic Serum Analysis Reveals Early Predictive and Pathogenic Signatures</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Wozniak, Jacob M. ; Mills, Robert H. ; Olson, Joshua ; Caldera, J.R. ; Sepich-Poore, Gregory D. ; Carrillo-Terrazas, Marvic ; Tsai, Chih-Ming ; Vargas, Fernando ; Knight, Rob ; Dorrestein, Pieter C. ; Liu, George Y. ; Nizet, Victor ; Sakoulas, George ; Rose, Warren ; Gonzalez, David J.</creator><creatorcontrib>Wozniak, Jacob M. ; Mills, Robert H. ; Olson, Joshua ; Caldera, J.R. ; Sepich-Poore, Gregory D. ; Carrillo-Terrazas, Marvic ; Tsai, Chih-Ming ; Vargas, Fernando ; Knight, Rob ; Dorrestein, Pieter C. ; Liu, George Y. ; Nizet, Victor ; Sakoulas, George ; Rose, Warren ; Gonzalez, David J.</creatorcontrib><description>Staphylococcus aureus bacteremia (SaB) causes significant disease in humans, carrying mortality rates of ∼25%. The ability to rapidly predict SaB patient responses and guide personalized treatment regimens could reduce mortality. Here, we present a resource of SaB prognostic biomarkers. Integrating proteomic and metabolomic techniques enabled the identification of &gt;10,000 features from &gt;200 serum samples collected upon clinical presentation. We interrogated the complexity of serum using multiple computational strategies, which provided a comprehensive view of the early host response to infection. Our biomarkers exceed the predictive capabilities of those previously reported, particularly when used in combination. Last, we validated the biological contribution of mortality-associated pathways using a murine model of SaB. Our findings represent a starting point for the development of a prognostic test for identifying high-risk patients at a time early enough to trigger intensive monitoring and interventions. [Display omitted] •Multi-omic analysis of S. aureus bacteremia serum reveals early mortality signatures•Modified peptides demonstrate enhanced predictive capabilities•Cytokine inference predicts major underlying signaling networks•Host metabolic responses represent actionable therapeutic targets Multi-omic analysis of the serum of patients with Staphylococcus aureus bacteremia identified features with predictive value to determine disease mortality and guide treatment decisions.</description><identifier>ISSN: 0092-8674</identifier><identifier>ISSN: 1097-4172</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2020.07.040</identifier><identifier>PMID: 32888495</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; bacteremia ; Bacteremia - blood ; Bacteremia - metabolism ; Bacteremia - mortality ; biomarkers ; Biomarkers - blood ; Biomarkers - metabolism ; Disease Models, Animal ; Female ; host-pathogen interaction ; Humans ; infectious disease ; Male ; metabolomics ; Metabolomics - methods ; Mice ; Middle Aged ; post-translational modifications ; Prognosis ; proteomics ; Proteomics - methods ; Risk Factors ; Staphylococcal Infections - blood ; Staphylococcal Infections - metabolism ; Staphylococcal Infections - mortality ; Staphylococcus aureus ; Staphylococcus aureus - pathogenicity</subject><ispartof>Cell, 2020-09, Vol.182 (5), p.1311-1327.e14</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright © 2020 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-3e0631d53fdb6c8f38498838c64cfeb6218dd28054cec852d30123c8e1299bc13</citedby><cites>FETCH-LOGICAL-c400t-3e0631d53fdb6c8f38498838c64cfeb6218dd28054cec852d30123c8e1299bc13</cites><orcidid>0000-0003-0563-8815 ; 0000-0001-5012-5993 ; 0000-0002-2453-0861 ; 0000-0003-3847-0422 ; 0000-0002-3003-1030 ; 0000-0002-0975-9019</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cell.2020.07.040$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32888495$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wozniak, Jacob M.</creatorcontrib><creatorcontrib>Mills, Robert H.</creatorcontrib><creatorcontrib>Olson, Joshua</creatorcontrib><creatorcontrib>Caldera, J.R.</creatorcontrib><creatorcontrib>Sepich-Poore, Gregory D.</creatorcontrib><creatorcontrib>Carrillo-Terrazas, Marvic</creatorcontrib><creatorcontrib>Tsai, Chih-Ming</creatorcontrib><creatorcontrib>Vargas, Fernando</creatorcontrib><creatorcontrib>Knight, Rob</creatorcontrib><creatorcontrib>Dorrestein, Pieter C.</creatorcontrib><creatorcontrib>Liu, George Y.</creatorcontrib><creatorcontrib>Nizet, Victor</creatorcontrib><creatorcontrib>Sakoulas, George</creatorcontrib><creatorcontrib>Rose, Warren</creatorcontrib><creatorcontrib>Gonzalez, David J.</creatorcontrib><title>Mortality Risk Profiling of Staphylococcus aureus Bacteremia by Multi-omic Serum Analysis Reveals Early Predictive and Pathogenic Signatures</title><title>Cell</title><addtitle>Cell</addtitle><description>Staphylococcus aureus bacteremia (SaB) causes significant disease in humans, carrying mortality rates of ∼25%. The ability to rapidly predict SaB patient responses and guide personalized treatment regimens could reduce mortality. Here, we present a resource of SaB prognostic biomarkers. Integrating proteomic and metabolomic techniques enabled the identification of &gt;10,000 features from &gt;200 serum samples collected upon clinical presentation. We interrogated the complexity of serum using multiple computational strategies, which provided a comprehensive view of the early host response to infection. Our biomarkers exceed the predictive capabilities of those previously reported, particularly when used in combination. Last, we validated the biological contribution of mortality-associated pathways using a murine model of SaB. Our findings represent a starting point for the development of a prognostic test for identifying high-risk patients at a time early enough to trigger intensive monitoring and interventions. [Display omitted] •Multi-omic analysis of S. aureus bacteremia serum reveals early mortality signatures•Modified peptides demonstrate enhanced predictive capabilities•Cytokine inference predicts major underlying signaling networks•Host metabolic responses represent actionable therapeutic targets Multi-omic analysis of the serum of patients with Staphylococcus aureus bacteremia identified features with predictive value to determine disease mortality and guide treatment decisions.</description><subject>Animals</subject><subject>bacteremia</subject><subject>Bacteremia - blood</subject><subject>Bacteremia - metabolism</subject><subject>Bacteremia - mortality</subject><subject>biomarkers</subject><subject>Biomarkers - blood</subject><subject>Biomarkers - metabolism</subject><subject>Disease Models, Animal</subject><subject>Female</subject><subject>host-pathogen interaction</subject><subject>Humans</subject><subject>infectious disease</subject><subject>Male</subject><subject>metabolomics</subject><subject>Metabolomics - methods</subject><subject>Mice</subject><subject>Middle Aged</subject><subject>post-translational modifications</subject><subject>Prognosis</subject><subject>proteomics</subject><subject>Proteomics - methods</subject><subject>Risk Factors</subject><subject>Staphylococcal Infections - blood</subject><subject>Staphylococcal Infections - metabolism</subject><subject>Staphylococcal Infections - mortality</subject><subject>Staphylococcus aureus</subject><subject>Staphylococcus aureus - pathogenicity</subject><issn>0092-8674</issn><issn>1097-4172</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kcFu1DAURS0EokPLD7BAXrJJeHacxJHYlKoFpFZUbVlbjvMy9ZDEg-2MlH_go3E0bZes3uaeI717CfnAIGfAqs-73OAw5Bw45FDnIOAV2TBo6kywmr8mG4CGZ7KqxQl5F8IOAGRZlm_JScGllKIpN-TvjfNRDzYu9M6G3_TWu94OdtpS19P7qPePy-CMM2YOVM8e0_mqTUSPo9W0XejNPESbudEaeo9-Hun5pIcl2EDv8IB6CPRS-2FJYuysifaAVE8dvdXx0W1xWjG7nXRM7nBG3vSJwPdP95T8urp8uPieXf_89uPi_DozAiBmBUJVsK4s-q6tjOyL9IqUhTSVMD22FWey67iEUhg0suRdAYwXRiLjTdMaVpyST0fv3rs_M4aoRhvWLvWEbg6KCwGiZqKsU5Qfo8a7EDz2au_tqP2iGKh1BbVTK6nWFRTUKq2QoI9P_rkdsXtBnmtPgS_HAKYvDxa9CsbiZFJFHk1UnbP_8_8DyaGa-g</recordid><startdate>20200903</startdate><enddate>20200903</enddate><creator>Wozniak, Jacob M.</creator><creator>Mills, Robert H.</creator><creator>Olson, Joshua</creator><creator>Caldera, J.R.</creator><creator>Sepich-Poore, Gregory D.</creator><creator>Carrillo-Terrazas, Marvic</creator><creator>Tsai, Chih-Ming</creator><creator>Vargas, Fernando</creator><creator>Knight, Rob</creator><creator>Dorrestein, Pieter C.</creator><creator>Liu, George Y.</creator><creator>Nizet, Victor</creator><creator>Sakoulas, George</creator><creator>Rose, Warren</creator><creator>Gonzalez, David J.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0563-8815</orcidid><orcidid>https://orcid.org/0000-0001-5012-5993</orcidid><orcidid>https://orcid.org/0000-0002-2453-0861</orcidid><orcidid>https://orcid.org/0000-0003-3847-0422</orcidid><orcidid>https://orcid.org/0000-0002-3003-1030</orcidid><orcidid>https://orcid.org/0000-0002-0975-9019</orcidid></search><sort><creationdate>20200903</creationdate><title>Mortality Risk Profiling of Staphylococcus aureus Bacteremia by Multi-omic Serum Analysis Reveals Early Predictive and Pathogenic Signatures</title><author>Wozniak, Jacob M. ; Mills, Robert H. ; Olson, Joshua ; Caldera, J.R. ; Sepich-Poore, Gregory D. ; Carrillo-Terrazas, Marvic ; Tsai, Chih-Ming ; Vargas, Fernando ; Knight, Rob ; Dorrestein, Pieter C. ; Liu, George Y. ; Nizet, Victor ; Sakoulas, George ; Rose, Warren ; Gonzalez, David J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-3e0631d53fdb6c8f38498838c64cfeb6218dd28054cec852d30123c8e1299bc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>bacteremia</topic><topic>Bacteremia - blood</topic><topic>Bacteremia - metabolism</topic><topic>Bacteremia - mortality</topic><topic>biomarkers</topic><topic>Biomarkers - blood</topic><topic>Biomarkers - metabolism</topic><topic>Disease Models, Animal</topic><topic>Female</topic><topic>host-pathogen interaction</topic><topic>Humans</topic><topic>infectious disease</topic><topic>Male</topic><topic>metabolomics</topic><topic>Metabolomics - methods</topic><topic>Mice</topic><topic>Middle Aged</topic><topic>post-translational modifications</topic><topic>Prognosis</topic><topic>proteomics</topic><topic>Proteomics - methods</topic><topic>Risk Factors</topic><topic>Staphylococcal Infections - blood</topic><topic>Staphylococcal Infections - metabolism</topic><topic>Staphylococcal Infections - mortality</topic><topic>Staphylococcus aureus</topic><topic>Staphylococcus aureus - pathogenicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wozniak, Jacob M.</creatorcontrib><creatorcontrib>Mills, Robert H.</creatorcontrib><creatorcontrib>Olson, Joshua</creatorcontrib><creatorcontrib>Caldera, J.R.</creatorcontrib><creatorcontrib>Sepich-Poore, Gregory D.</creatorcontrib><creatorcontrib>Carrillo-Terrazas, Marvic</creatorcontrib><creatorcontrib>Tsai, Chih-Ming</creatorcontrib><creatorcontrib>Vargas, Fernando</creatorcontrib><creatorcontrib>Knight, Rob</creatorcontrib><creatorcontrib>Dorrestein, Pieter C.</creatorcontrib><creatorcontrib>Liu, George Y.</creatorcontrib><creatorcontrib>Nizet, Victor</creatorcontrib><creatorcontrib>Sakoulas, George</creatorcontrib><creatorcontrib>Rose, Warren</creatorcontrib><creatorcontrib>Gonzalez, David J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wozniak, Jacob M.</au><au>Mills, Robert H.</au><au>Olson, Joshua</au><au>Caldera, J.R.</au><au>Sepich-Poore, Gregory D.</au><au>Carrillo-Terrazas, Marvic</au><au>Tsai, Chih-Ming</au><au>Vargas, Fernando</au><au>Knight, Rob</au><au>Dorrestein, Pieter C.</au><au>Liu, George Y.</au><au>Nizet, Victor</au><au>Sakoulas, George</au><au>Rose, Warren</au><au>Gonzalez, David J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mortality Risk Profiling of Staphylococcus aureus Bacteremia by Multi-omic Serum Analysis Reveals Early Predictive and Pathogenic Signatures</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2020-09-03</date><risdate>2020</risdate><volume>182</volume><issue>5</issue><spage>1311</spage><epage>1327.e14</epage><pages>1311-1327.e14</pages><issn>0092-8674</issn><issn>1097-4172</issn><eissn>1097-4172</eissn><abstract>Staphylococcus aureus bacteremia (SaB) causes significant disease in humans, carrying mortality rates of ∼25%. The ability to rapidly predict SaB patient responses and guide personalized treatment regimens could reduce mortality. Here, we present a resource of SaB prognostic biomarkers. Integrating proteomic and metabolomic techniques enabled the identification of &gt;10,000 features from &gt;200 serum samples collected upon clinical presentation. We interrogated the complexity of serum using multiple computational strategies, which provided a comprehensive view of the early host response to infection. Our biomarkers exceed the predictive capabilities of those previously reported, particularly when used in combination. Last, we validated the biological contribution of mortality-associated pathways using a murine model of SaB. Our findings represent a starting point for the development of a prognostic test for identifying high-risk patients at a time early enough to trigger intensive monitoring and interventions. [Display omitted] •Multi-omic analysis of S. aureus bacteremia serum reveals early mortality signatures•Modified peptides demonstrate enhanced predictive capabilities•Cytokine inference predicts major underlying signaling networks•Host metabolic responses represent actionable therapeutic targets Multi-omic analysis of the serum of patients with Staphylococcus aureus bacteremia identified features with predictive value to determine disease mortality and guide treatment decisions.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32888495</pmid><doi>10.1016/j.cell.2020.07.040</doi><orcidid>https://orcid.org/0000-0003-0563-8815</orcidid><orcidid>https://orcid.org/0000-0001-5012-5993</orcidid><orcidid>https://orcid.org/0000-0002-2453-0861</orcidid><orcidid>https://orcid.org/0000-0003-3847-0422</orcidid><orcidid>https://orcid.org/0000-0002-3003-1030</orcidid><orcidid>https://orcid.org/0000-0002-0975-9019</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0092-8674
ispartof Cell, 2020-09, Vol.182 (5), p.1311-1327.e14
issn 0092-8674
1097-4172
1097-4172
language eng
recordid cdi_proquest_miscellaneous_2440471457
source MEDLINE; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present)
subjects Animals
bacteremia
Bacteremia - blood
Bacteremia - metabolism
Bacteremia - mortality
biomarkers
Biomarkers - blood
Biomarkers - metabolism
Disease Models, Animal
Female
host-pathogen interaction
Humans
infectious disease
Male
metabolomics
Metabolomics - methods
Mice
Middle Aged
post-translational modifications
Prognosis
proteomics
Proteomics - methods
Risk Factors
Staphylococcal Infections - blood
Staphylococcal Infections - metabolism
Staphylococcal Infections - mortality
Staphylococcus aureus
Staphylococcus aureus - pathogenicity
title Mortality Risk Profiling of Staphylococcus aureus Bacteremia by Multi-omic Serum Analysis Reveals Early Predictive and Pathogenic Signatures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T16%3A40%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mortality%20Risk%20Profiling%20of%20Staphylococcus%20aureus%20Bacteremia%20by%20Multi-omic%20Serum%20Analysis%20Reveals%20Early%20Predictive%20and%20Pathogenic%20Signatures&rft.jtitle=Cell&rft.au=Wozniak,%20Jacob%20M.&rft.date=2020-09-03&rft.volume=182&rft.issue=5&rft.spage=1311&rft.epage=1327.e14&rft.pages=1311-1327.e14&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2020.07.040&rft_dat=%3Cproquest_cross%3E2440471457%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440471457&rft_id=info:pmid/32888495&rft_els_id=S009286742030948X&rfr_iscdi=true