Mortality Risk Profiling of Staphylococcus aureus Bacteremia by Multi-omic Serum Analysis Reveals Early Predictive and Pathogenic Signatures
Staphylococcus aureus bacteremia (SaB) causes significant disease in humans, carrying mortality rates of ∼25%. The ability to rapidly predict SaB patient responses and guide personalized treatment regimens could reduce mortality. Here, we present a resource of SaB prognostic biomarkers. Integrating...
Gespeichert in:
Veröffentlicht in: | Cell 2020-09, Vol.182 (5), p.1311-1327.e14 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1327.e14 |
---|---|
container_issue | 5 |
container_start_page | 1311 |
container_title | Cell |
container_volume | 182 |
creator | Wozniak, Jacob M. Mills, Robert H. Olson, Joshua Caldera, J.R. Sepich-Poore, Gregory D. Carrillo-Terrazas, Marvic Tsai, Chih-Ming Vargas, Fernando Knight, Rob Dorrestein, Pieter C. Liu, George Y. Nizet, Victor Sakoulas, George Rose, Warren Gonzalez, David J. |
description | Staphylococcus aureus bacteremia (SaB) causes significant disease in humans, carrying mortality rates of ∼25%. The ability to rapidly predict SaB patient responses and guide personalized treatment regimens could reduce mortality. Here, we present a resource of SaB prognostic biomarkers. Integrating proteomic and metabolomic techniques enabled the identification of >10,000 features from >200 serum samples collected upon clinical presentation. We interrogated the complexity of serum using multiple computational strategies, which provided a comprehensive view of the early host response to infection. Our biomarkers exceed the predictive capabilities of those previously reported, particularly when used in combination. Last, we validated the biological contribution of mortality-associated pathways using a murine model of SaB. Our findings represent a starting point for the development of a prognostic test for identifying high-risk patients at a time early enough to trigger intensive monitoring and interventions.
[Display omitted]
•Multi-omic analysis of S. aureus bacteremia serum reveals early mortality signatures•Modified peptides demonstrate enhanced predictive capabilities•Cytokine inference predicts major underlying signaling networks•Host metabolic responses represent actionable therapeutic targets
Multi-omic analysis of the serum of patients with Staphylococcus aureus bacteremia identified features with predictive value to determine disease mortality and guide treatment decisions. |
doi_str_mv | 10.1016/j.cell.2020.07.040 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2440471457</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S009286742030948X</els_id><sourcerecordid>2440471457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-3e0631d53fdb6c8f38498838c64cfeb6218dd28054cec852d30123c8e1299bc13</originalsourceid><addsrcrecordid>eNp9kcFu1DAURS0EokPLD7BAXrJJeHacxJHYlKoFpFZUbVlbjvMy9ZDEg-2MlH_go3E0bZes3uaeI717CfnAIGfAqs-73OAw5Bw45FDnIOAV2TBo6kywmr8mG4CGZ7KqxQl5F8IOAGRZlm_JScGllKIpN-TvjfNRDzYu9M6G3_TWu94OdtpS19P7qPePy-CMM2YOVM8e0_mqTUSPo9W0XejNPESbudEaeo9-Hun5pIcl2EDv8IB6CPRS-2FJYuysifaAVE8dvdXx0W1xWjG7nXRM7nBG3vSJwPdP95T8urp8uPieXf_89uPi_DozAiBmBUJVsK4s-q6tjOyL9IqUhTSVMD22FWey67iEUhg0suRdAYwXRiLjTdMaVpyST0fv3rs_M4aoRhvWLvWEbg6KCwGiZqKsU5Qfo8a7EDz2au_tqP2iGKh1BbVTK6nWFRTUKq2QoI9P_rkdsXtBnmtPgS_HAKYvDxa9CsbiZFJFHk1UnbP_8_8DyaGa-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440471457</pqid></control><display><type>article</type><title>Mortality Risk Profiling of Staphylococcus aureus Bacteremia by Multi-omic Serum Analysis Reveals Early Predictive and Pathogenic Signatures</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Wozniak, Jacob M. ; Mills, Robert H. ; Olson, Joshua ; Caldera, J.R. ; Sepich-Poore, Gregory D. ; Carrillo-Terrazas, Marvic ; Tsai, Chih-Ming ; Vargas, Fernando ; Knight, Rob ; Dorrestein, Pieter C. ; Liu, George Y. ; Nizet, Victor ; Sakoulas, George ; Rose, Warren ; Gonzalez, David J.</creator><creatorcontrib>Wozniak, Jacob M. ; Mills, Robert H. ; Olson, Joshua ; Caldera, J.R. ; Sepich-Poore, Gregory D. ; Carrillo-Terrazas, Marvic ; Tsai, Chih-Ming ; Vargas, Fernando ; Knight, Rob ; Dorrestein, Pieter C. ; Liu, George Y. ; Nizet, Victor ; Sakoulas, George ; Rose, Warren ; Gonzalez, David J.</creatorcontrib><description>Staphylococcus aureus bacteremia (SaB) causes significant disease in humans, carrying mortality rates of ∼25%. The ability to rapidly predict SaB patient responses and guide personalized treatment regimens could reduce mortality. Here, we present a resource of SaB prognostic biomarkers. Integrating proteomic and metabolomic techniques enabled the identification of >10,000 features from >200 serum samples collected upon clinical presentation. We interrogated the complexity of serum using multiple computational strategies, which provided a comprehensive view of the early host response to infection. Our biomarkers exceed the predictive capabilities of those previously reported, particularly when used in combination. Last, we validated the biological contribution of mortality-associated pathways using a murine model of SaB. Our findings represent a starting point for the development of a prognostic test for identifying high-risk patients at a time early enough to trigger intensive monitoring and interventions.
[Display omitted]
•Multi-omic analysis of S. aureus bacteremia serum reveals early mortality signatures•Modified peptides demonstrate enhanced predictive capabilities•Cytokine inference predicts major underlying signaling networks•Host metabolic responses represent actionable therapeutic targets
Multi-omic analysis of the serum of patients with Staphylococcus aureus bacteremia identified features with predictive value to determine disease mortality and guide treatment decisions.</description><identifier>ISSN: 0092-8674</identifier><identifier>ISSN: 1097-4172</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2020.07.040</identifier><identifier>PMID: 32888495</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; bacteremia ; Bacteremia - blood ; Bacteremia - metabolism ; Bacteremia - mortality ; biomarkers ; Biomarkers - blood ; Biomarkers - metabolism ; Disease Models, Animal ; Female ; host-pathogen interaction ; Humans ; infectious disease ; Male ; metabolomics ; Metabolomics - methods ; Mice ; Middle Aged ; post-translational modifications ; Prognosis ; proteomics ; Proteomics - methods ; Risk Factors ; Staphylococcal Infections - blood ; Staphylococcal Infections - metabolism ; Staphylococcal Infections - mortality ; Staphylococcus aureus ; Staphylococcus aureus - pathogenicity</subject><ispartof>Cell, 2020-09, Vol.182 (5), p.1311-1327.e14</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright © 2020 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-3e0631d53fdb6c8f38498838c64cfeb6218dd28054cec852d30123c8e1299bc13</citedby><cites>FETCH-LOGICAL-c400t-3e0631d53fdb6c8f38498838c64cfeb6218dd28054cec852d30123c8e1299bc13</cites><orcidid>0000-0003-0563-8815 ; 0000-0001-5012-5993 ; 0000-0002-2453-0861 ; 0000-0003-3847-0422 ; 0000-0002-3003-1030 ; 0000-0002-0975-9019</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cell.2020.07.040$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32888495$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wozniak, Jacob M.</creatorcontrib><creatorcontrib>Mills, Robert H.</creatorcontrib><creatorcontrib>Olson, Joshua</creatorcontrib><creatorcontrib>Caldera, J.R.</creatorcontrib><creatorcontrib>Sepich-Poore, Gregory D.</creatorcontrib><creatorcontrib>Carrillo-Terrazas, Marvic</creatorcontrib><creatorcontrib>Tsai, Chih-Ming</creatorcontrib><creatorcontrib>Vargas, Fernando</creatorcontrib><creatorcontrib>Knight, Rob</creatorcontrib><creatorcontrib>Dorrestein, Pieter C.</creatorcontrib><creatorcontrib>Liu, George Y.</creatorcontrib><creatorcontrib>Nizet, Victor</creatorcontrib><creatorcontrib>Sakoulas, George</creatorcontrib><creatorcontrib>Rose, Warren</creatorcontrib><creatorcontrib>Gonzalez, David J.</creatorcontrib><title>Mortality Risk Profiling of Staphylococcus aureus Bacteremia by Multi-omic Serum Analysis Reveals Early Predictive and Pathogenic Signatures</title><title>Cell</title><addtitle>Cell</addtitle><description>Staphylococcus aureus bacteremia (SaB) causes significant disease in humans, carrying mortality rates of ∼25%. The ability to rapidly predict SaB patient responses and guide personalized treatment regimens could reduce mortality. Here, we present a resource of SaB prognostic biomarkers. Integrating proteomic and metabolomic techniques enabled the identification of >10,000 features from >200 serum samples collected upon clinical presentation. We interrogated the complexity of serum using multiple computational strategies, which provided a comprehensive view of the early host response to infection. Our biomarkers exceed the predictive capabilities of those previously reported, particularly when used in combination. Last, we validated the biological contribution of mortality-associated pathways using a murine model of SaB. Our findings represent a starting point for the development of a prognostic test for identifying high-risk patients at a time early enough to trigger intensive monitoring and interventions.
[Display omitted]
•Multi-omic analysis of S. aureus bacteremia serum reveals early mortality signatures•Modified peptides demonstrate enhanced predictive capabilities•Cytokine inference predicts major underlying signaling networks•Host metabolic responses represent actionable therapeutic targets
Multi-omic analysis of the serum of patients with Staphylococcus aureus bacteremia identified features with predictive value to determine disease mortality and guide treatment decisions.</description><subject>Animals</subject><subject>bacteremia</subject><subject>Bacteremia - blood</subject><subject>Bacteremia - metabolism</subject><subject>Bacteremia - mortality</subject><subject>biomarkers</subject><subject>Biomarkers - blood</subject><subject>Biomarkers - metabolism</subject><subject>Disease Models, Animal</subject><subject>Female</subject><subject>host-pathogen interaction</subject><subject>Humans</subject><subject>infectious disease</subject><subject>Male</subject><subject>metabolomics</subject><subject>Metabolomics - methods</subject><subject>Mice</subject><subject>Middle Aged</subject><subject>post-translational modifications</subject><subject>Prognosis</subject><subject>proteomics</subject><subject>Proteomics - methods</subject><subject>Risk Factors</subject><subject>Staphylococcal Infections - blood</subject><subject>Staphylococcal Infections - metabolism</subject><subject>Staphylococcal Infections - mortality</subject><subject>Staphylococcus aureus</subject><subject>Staphylococcus aureus - pathogenicity</subject><issn>0092-8674</issn><issn>1097-4172</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kcFu1DAURS0EokPLD7BAXrJJeHacxJHYlKoFpFZUbVlbjvMy9ZDEg-2MlH_go3E0bZes3uaeI717CfnAIGfAqs-73OAw5Bw45FDnIOAV2TBo6kywmr8mG4CGZ7KqxQl5F8IOAGRZlm_JScGllKIpN-TvjfNRDzYu9M6G3_TWu94OdtpS19P7qPePy-CMM2YOVM8e0_mqTUSPo9W0XejNPESbudEaeo9-Hun5pIcl2EDv8IB6CPRS-2FJYuysifaAVE8dvdXx0W1xWjG7nXRM7nBG3vSJwPdP95T8urp8uPieXf_89uPi_DozAiBmBUJVsK4s-q6tjOyL9IqUhTSVMD22FWey67iEUhg0suRdAYwXRiLjTdMaVpyST0fv3rs_M4aoRhvWLvWEbg6KCwGiZqKsU5Qfo8a7EDz2au_tqP2iGKh1BbVTK6nWFRTUKq2QoI9P_rkdsXtBnmtPgS_HAKYvDxa9CsbiZFJFHk1UnbP_8_8DyaGa-g</recordid><startdate>20200903</startdate><enddate>20200903</enddate><creator>Wozniak, Jacob M.</creator><creator>Mills, Robert H.</creator><creator>Olson, Joshua</creator><creator>Caldera, J.R.</creator><creator>Sepich-Poore, Gregory D.</creator><creator>Carrillo-Terrazas, Marvic</creator><creator>Tsai, Chih-Ming</creator><creator>Vargas, Fernando</creator><creator>Knight, Rob</creator><creator>Dorrestein, Pieter C.</creator><creator>Liu, George Y.</creator><creator>Nizet, Victor</creator><creator>Sakoulas, George</creator><creator>Rose, Warren</creator><creator>Gonzalez, David J.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0563-8815</orcidid><orcidid>https://orcid.org/0000-0001-5012-5993</orcidid><orcidid>https://orcid.org/0000-0002-2453-0861</orcidid><orcidid>https://orcid.org/0000-0003-3847-0422</orcidid><orcidid>https://orcid.org/0000-0002-3003-1030</orcidid><orcidid>https://orcid.org/0000-0002-0975-9019</orcidid></search><sort><creationdate>20200903</creationdate><title>Mortality Risk Profiling of Staphylococcus aureus Bacteremia by Multi-omic Serum Analysis Reveals Early Predictive and Pathogenic Signatures</title><author>Wozniak, Jacob M. ; Mills, Robert H. ; Olson, Joshua ; Caldera, J.R. ; Sepich-Poore, Gregory D. ; Carrillo-Terrazas, Marvic ; Tsai, Chih-Ming ; Vargas, Fernando ; Knight, Rob ; Dorrestein, Pieter C. ; Liu, George Y. ; Nizet, Victor ; Sakoulas, George ; Rose, Warren ; Gonzalez, David J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-3e0631d53fdb6c8f38498838c64cfeb6218dd28054cec852d30123c8e1299bc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>bacteremia</topic><topic>Bacteremia - blood</topic><topic>Bacteremia - metabolism</topic><topic>Bacteremia - mortality</topic><topic>biomarkers</topic><topic>Biomarkers - blood</topic><topic>Biomarkers - metabolism</topic><topic>Disease Models, Animal</topic><topic>Female</topic><topic>host-pathogen interaction</topic><topic>Humans</topic><topic>infectious disease</topic><topic>Male</topic><topic>metabolomics</topic><topic>Metabolomics - methods</topic><topic>Mice</topic><topic>Middle Aged</topic><topic>post-translational modifications</topic><topic>Prognosis</topic><topic>proteomics</topic><topic>Proteomics - methods</topic><topic>Risk Factors</topic><topic>Staphylococcal Infections - blood</topic><topic>Staphylococcal Infections - metabolism</topic><topic>Staphylococcal Infections - mortality</topic><topic>Staphylococcus aureus</topic><topic>Staphylococcus aureus - pathogenicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wozniak, Jacob M.</creatorcontrib><creatorcontrib>Mills, Robert H.</creatorcontrib><creatorcontrib>Olson, Joshua</creatorcontrib><creatorcontrib>Caldera, J.R.</creatorcontrib><creatorcontrib>Sepich-Poore, Gregory D.</creatorcontrib><creatorcontrib>Carrillo-Terrazas, Marvic</creatorcontrib><creatorcontrib>Tsai, Chih-Ming</creatorcontrib><creatorcontrib>Vargas, Fernando</creatorcontrib><creatorcontrib>Knight, Rob</creatorcontrib><creatorcontrib>Dorrestein, Pieter C.</creatorcontrib><creatorcontrib>Liu, George Y.</creatorcontrib><creatorcontrib>Nizet, Victor</creatorcontrib><creatorcontrib>Sakoulas, George</creatorcontrib><creatorcontrib>Rose, Warren</creatorcontrib><creatorcontrib>Gonzalez, David J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wozniak, Jacob M.</au><au>Mills, Robert H.</au><au>Olson, Joshua</au><au>Caldera, J.R.</au><au>Sepich-Poore, Gregory D.</au><au>Carrillo-Terrazas, Marvic</au><au>Tsai, Chih-Ming</au><au>Vargas, Fernando</au><au>Knight, Rob</au><au>Dorrestein, Pieter C.</au><au>Liu, George Y.</au><au>Nizet, Victor</au><au>Sakoulas, George</au><au>Rose, Warren</au><au>Gonzalez, David J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mortality Risk Profiling of Staphylococcus aureus Bacteremia by Multi-omic Serum Analysis Reveals Early Predictive and Pathogenic Signatures</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2020-09-03</date><risdate>2020</risdate><volume>182</volume><issue>5</issue><spage>1311</spage><epage>1327.e14</epage><pages>1311-1327.e14</pages><issn>0092-8674</issn><issn>1097-4172</issn><eissn>1097-4172</eissn><abstract>Staphylococcus aureus bacteremia (SaB) causes significant disease in humans, carrying mortality rates of ∼25%. The ability to rapidly predict SaB patient responses and guide personalized treatment regimens could reduce mortality. Here, we present a resource of SaB prognostic biomarkers. Integrating proteomic and metabolomic techniques enabled the identification of >10,000 features from >200 serum samples collected upon clinical presentation. We interrogated the complexity of serum using multiple computational strategies, which provided a comprehensive view of the early host response to infection. Our biomarkers exceed the predictive capabilities of those previously reported, particularly when used in combination. Last, we validated the biological contribution of mortality-associated pathways using a murine model of SaB. Our findings represent a starting point for the development of a prognostic test for identifying high-risk patients at a time early enough to trigger intensive monitoring and interventions.
[Display omitted]
•Multi-omic analysis of S. aureus bacteremia serum reveals early mortality signatures•Modified peptides demonstrate enhanced predictive capabilities•Cytokine inference predicts major underlying signaling networks•Host metabolic responses represent actionable therapeutic targets
Multi-omic analysis of the serum of patients with Staphylococcus aureus bacteremia identified features with predictive value to determine disease mortality and guide treatment decisions.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32888495</pmid><doi>10.1016/j.cell.2020.07.040</doi><orcidid>https://orcid.org/0000-0003-0563-8815</orcidid><orcidid>https://orcid.org/0000-0001-5012-5993</orcidid><orcidid>https://orcid.org/0000-0002-2453-0861</orcidid><orcidid>https://orcid.org/0000-0003-3847-0422</orcidid><orcidid>https://orcid.org/0000-0002-3003-1030</orcidid><orcidid>https://orcid.org/0000-0002-0975-9019</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0092-8674 |
ispartof | Cell, 2020-09, Vol.182 (5), p.1311-1327.e14 |
issn | 0092-8674 1097-4172 1097-4172 |
language | eng |
recordid | cdi_proquest_miscellaneous_2440471457 |
source | MEDLINE; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present) |
subjects | Animals bacteremia Bacteremia - blood Bacteremia - metabolism Bacteremia - mortality biomarkers Biomarkers - blood Biomarkers - metabolism Disease Models, Animal Female host-pathogen interaction Humans infectious disease Male metabolomics Metabolomics - methods Mice Middle Aged post-translational modifications Prognosis proteomics Proteomics - methods Risk Factors Staphylococcal Infections - blood Staphylococcal Infections - metabolism Staphylococcal Infections - mortality Staphylococcus aureus Staphylococcus aureus - pathogenicity |
title | Mortality Risk Profiling of Staphylococcus aureus Bacteremia by Multi-omic Serum Analysis Reveals Early Predictive and Pathogenic Signatures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T16%3A40%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mortality%20Risk%20Profiling%20of%20Staphylococcus%20aureus%20Bacteremia%20by%20Multi-omic%20Serum%20Analysis%20Reveals%20Early%20Predictive%20and%20Pathogenic%20Signatures&rft.jtitle=Cell&rft.au=Wozniak,%20Jacob%20M.&rft.date=2020-09-03&rft.volume=182&rft.issue=5&rft.spage=1311&rft.epage=1327.e14&rft.pages=1311-1327.e14&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2020.07.040&rft_dat=%3Cproquest_cross%3E2440471457%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440471457&rft_id=info:pmid/32888495&rft_els_id=S009286742030948X&rfr_iscdi=true |