Three-Dimensional Polycatenation of a Uranium-Based Metal–Organic Cage: Structural Complexity and Radiation Detection

The potential applications of metal–organic cages (MOCs) are mostly achieved through specific host–guest interactions within their cavities. Electronic applications would require an effective electron transport pathway, which has been extensively studied in hybrid organic–inorganic materials with ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2020-09, Vol.142 (38), p.16218-16222
Hauptverfasser: Cheng, Liwei, Liang, Chengyu, Liu, Wei, Wang, Yaxing, Chen, Bin, Zhang, Hailong, Wang, Yanlong, Chai, Zhifang, Wang, Shuao
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16222
container_issue 38
container_start_page 16218
container_title Journal of the American Chemical Society
container_volume 142
creator Cheng, Liwei
Liang, Chengyu
Liu, Wei
Wang, Yaxing
Chen, Bin
Zhang, Hailong
Wang, Yanlong
Chai, Zhifang
Wang, Shuao
description The potential applications of metal–organic cages (MOCs) are mostly achieved through specific host–guest interactions within their cavities. Electronic applications would require an effective electron transport pathway, which has been extensively studied in hybrid organic–inorganic materials with extended structures. These properties have not been considered for MOCs because cage-to-cage interactions in these materials have rarely been examined and are challenging to functionalize. We report here a previously unobserved actinide-based MOC assembled from four hexagonal-bipyramidal-coordinated uranyl ions and six bidentate flexible ligands. Remarkably, each isolated cage is further interlocked with six adjacent ones through mechanical bonds, resulting in the first case of a 0D → 3D f-element polycatenated metal–organic cage, SCU-14. Long-range π–π stacking extending throughout the structure is built via polycatenation, providing a visible carrier transmission path. SCU-14 is also an extremely rare case of an intrinsically semiconductive MOC with a wide band gap of 2.61 eV. Combined with the high X-ray attenuation efficiency, SCU-14 can effectively convert X-ray photons to electrical current signals and presents a promising sensitivity of 54.93 μC Gy–1 cm–2.
doi_str_mv 10.1021/jacs.0c08117
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2440470344</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2440470344</sourcerecordid><originalsourceid>FETCH-LOGICAL-a367t-10141df2e0be2bd5ad4f2acb614ebcd8a6b1de1a2a8d45121dfd0e4163e6a56c3</originalsourceid><addsrcrecordid>eNptkMtOwzAQRS0EEqWw4wO8ZEGK7TgPsYOUl1RUBO06mtiTkiqJi-0IuuMf-EO-hERFYsNqZq6OrjSHkFPOJpwJfrEG5SZMsZTzZI-MeCRYEHER75MRY0wESRqHh-TIuXV_SpHyEXlfvFrEYFo12LrKtFDTJ1NvFXhswfcBNSUFurTQVl0TXINDTR_RQ_39-TW3qz5WNIMVXtIXbzvlO9tXZKbZ1PhR-S2FVtNn0NWubIoe1bAdk4MSaocnv3NMlrc3i-w-mM3vHrKrWQBhnPiAMy65LgWyAkWhI9CyFKCKmEsslE4hLrhGDgJSLftXe1YzlDwOMYYoVuGYnO16N9a8deh83lROYV1Di6ZzuZCSyYSFUvbo-Q5V1jhnscw3tmrAbnPO8sFvPvjNf_3-NQ_h2nS2d-f-R38A401-4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440470344</pqid></control><display><type>article</type><title>Three-Dimensional Polycatenation of a Uranium-Based Metal–Organic Cage: Structural Complexity and Radiation Detection</title><source>ACS_美国化学学会期刊(与NSTL共建)</source><creator>Cheng, Liwei ; Liang, Chengyu ; Liu, Wei ; Wang, Yaxing ; Chen, Bin ; Zhang, Hailong ; Wang, Yanlong ; Chai, Zhifang ; Wang, Shuao</creator><creatorcontrib>Cheng, Liwei ; Liang, Chengyu ; Liu, Wei ; Wang, Yaxing ; Chen, Bin ; Zhang, Hailong ; Wang, Yanlong ; Chai, Zhifang ; Wang, Shuao</creatorcontrib><description>The potential applications of metal–organic cages (MOCs) are mostly achieved through specific host–guest interactions within their cavities. Electronic applications would require an effective electron transport pathway, which has been extensively studied in hybrid organic–inorganic materials with extended structures. These properties have not been considered for MOCs because cage-to-cage interactions in these materials have rarely been examined and are challenging to functionalize. We report here a previously unobserved actinide-based MOC assembled from four hexagonal-bipyramidal-coordinated uranyl ions and six bidentate flexible ligands. Remarkably, each isolated cage is further interlocked with six adjacent ones through mechanical bonds, resulting in the first case of a 0D → 3D f-element polycatenated metal–organic cage, SCU-14. Long-range π–π stacking extending throughout the structure is built via polycatenation, providing a visible carrier transmission path. SCU-14 is also an extremely rare case of an intrinsically semiconductive MOC with a wide band gap of 2.61 eV. Combined with the high X-ray attenuation efficiency, SCU-14 can effectively convert X-ray photons to electrical current signals and presents a promising sensitivity of 54.93 μC Gy–1 cm–2.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.0c08117</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2020-09, Vol.142 (38), p.16218-16222</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a367t-10141df2e0be2bd5ad4f2acb614ebcd8a6b1de1a2a8d45121dfd0e4163e6a56c3</citedby><cites>FETCH-LOGICAL-a367t-10141df2e0be2bd5ad4f2acb614ebcd8a6b1de1a2a8d45121dfd0e4163e6a56c3</cites><orcidid>0000-0002-1842-339X ; 0000-0002-1526-1102</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.0c08117$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.0c08117$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Cheng, Liwei</creatorcontrib><creatorcontrib>Liang, Chengyu</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Wang, Yaxing</creatorcontrib><creatorcontrib>Chen, Bin</creatorcontrib><creatorcontrib>Zhang, Hailong</creatorcontrib><creatorcontrib>Wang, Yanlong</creatorcontrib><creatorcontrib>Chai, Zhifang</creatorcontrib><creatorcontrib>Wang, Shuao</creatorcontrib><title>Three-Dimensional Polycatenation of a Uranium-Based Metal–Organic Cage: Structural Complexity and Radiation Detection</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>The potential applications of metal–organic cages (MOCs) are mostly achieved through specific host–guest interactions within their cavities. Electronic applications would require an effective electron transport pathway, which has been extensively studied in hybrid organic–inorganic materials with extended structures. These properties have not been considered for MOCs because cage-to-cage interactions in these materials have rarely been examined and are challenging to functionalize. We report here a previously unobserved actinide-based MOC assembled from four hexagonal-bipyramidal-coordinated uranyl ions and six bidentate flexible ligands. Remarkably, each isolated cage is further interlocked with six adjacent ones through mechanical bonds, resulting in the first case of a 0D → 3D f-element polycatenated metal–organic cage, SCU-14. Long-range π–π stacking extending throughout the structure is built via polycatenation, providing a visible carrier transmission path. SCU-14 is also an extremely rare case of an intrinsically semiconductive MOC with a wide band gap of 2.61 eV. Combined with the high X-ray attenuation efficiency, SCU-14 can effectively convert X-ray photons to electrical current signals and presents a promising sensitivity of 54.93 μC Gy–1 cm–2.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNptkMtOwzAQRS0EEqWw4wO8ZEGK7TgPsYOUl1RUBO06mtiTkiqJi-0IuuMf-EO-hERFYsNqZq6OrjSHkFPOJpwJfrEG5SZMsZTzZI-MeCRYEHER75MRY0wESRqHh-TIuXV_SpHyEXlfvFrEYFo12LrKtFDTJ1NvFXhswfcBNSUFurTQVl0TXINDTR_RQ_39-TW3qz5WNIMVXtIXbzvlO9tXZKbZ1PhR-S2FVtNn0NWubIoe1bAdk4MSaocnv3NMlrc3i-w-mM3vHrKrWQBhnPiAMy65LgWyAkWhI9CyFKCKmEsslE4hLrhGDgJSLftXe1YzlDwOMYYoVuGYnO16N9a8deh83lROYV1Di6ZzuZCSyYSFUvbo-Q5V1jhnscw3tmrAbnPO8sFvPvjNf_3-NQ_h2nS2d-f-R38A401-4g</recordid><startdate>20200923</startdate><enddate>20200923</enddate><creator>Cheng, Liwei</creator><creator>Liang, Chengyu</creator><creator>Liu, Wei</creator><creator>Wang, Yaxing</creator><creator>Chen, Bin</creator><creator>Zhang, Hailong</creator><creator>Wang, Yanlong</creator><creator>Chai, Zhifang</creator><creator>Wang, Shuao</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1842-339X</orcidid><orcidid>https://orcid.org/0000-0002-1526-1102</orcidid></search><sort><creationdate>20200923</creationdate><title>Three-Dimensional Polycatenation of a Uranium-Based Metal–Organic Cage: Structural Complexity and Radiation Detection</title><author>Cheng, Liwei ; Liang, Chengyu ; Liu, Wei ; Wang, Yaxing ; Chen, Bin ; Zhang, Hailong ; Wang, Yanlong ; Chai, Zhifang ; Wang, Shuao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a367t-10141df2e0be2bd5ad4f2acb614ebcd8a6b1de1a2a8d45121dfd0e4163e6a56c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Liwei</creatorcontrib><creatorcontrib>Liang, Chengyu</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Wang, Yaxing</creatorcontrib><creatorcontrib>Chen, Bin</creatorcontrib><creatorcontrib>Zhang, Hailong</creatorcontrib><creatorcontrib>Wang, Yanlong</creatorcontrib><creatorcontrib>Chai, Zhifang</creatorcontrib><creatorcontrib>Wang, Shuao</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Liwei</au><au>Liang, Chengyu</au><au>Liu, Wei</au><au>Wang, Yaxing</au><au>Chen, Bin</au><au>Zhang, Hailong</au><au>Wang, Yanlong</au><au>Chai, Zhifang</au><au>Wang, Shuao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-Dimensional Polycatenation of a Uranium-Based Metal–Organic Cage: Structural Complexity and Radiation Detection</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2020-09-23</date><risdate>2020</risdate><volume>142</volume><issue>38</issue><spage>16218</spage><epage>16222</epage><pages>16218-16222</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>The potential applications of metal–organic cages (MOCs) are mostly achieved through specific host–guest interactions within their cavities. Electronic applications would require an effective electron transport pathway, which has been extensively studied in hybrid organic–inorganic materials with extended structures. These properties have not been considered for MOCs because cage-to-cage interactions in these materials have rarely been examined and are challenging to functionalize. We report here a previously unobserved actinide-based MOC assembled from four hexagonal-bipyramidal-coordinated uranyl ions and six bidentate flexible ligands. Remarkably, each isolated cage is further interlocked with six adjacent ones through mechanical bonds, resulting in the first case of a 0D → 3D f-element polycatenated metal–organic cage, SCU-14. Long-range π–π stacking extending throughout the structure is built via polycatenation, providing a visible carrier transmission path. SCU-14 is also an extremely rare case of an intrinsically semiconductive MOC with a wide band gap of 2.61 eV. Combined with the high X-ray attenuation efficiency, SCU-14 can effectively convert X-ray photons to electrical current signals and presents a promising sensitivity of 54.93 μC Gy–1 cm–2.</abstract><pub>American Chemical Society</pub><doi>10.1021/jacs.0c08117</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-1842-339X</orcidid><orcidid>https://orcid.org/0000-0002-1526-1102</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2020-09, Vol.142 (38), p.16218-16222
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_2440470344
source ACS_美国化学学会期刊(与NSTL共建)
title Three-Dimensional Polycatenation of a Uranium-Based Metal–Organic Cage: Structural Complexity and Radiation Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A02%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-Dimensional%20Polycatenation%20of%20a%20Uranium-Based%20Metal%E2%80%93Organic%20Cage:%20Structural%20Complexity%20and%20Radiation%20Detection&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Cheng,%20Liwei&rft.date=2020-09-23&rft.volume=142&rft.issue=38&rft.spage=16218&rft.epage=16222&rft.pages=16218-16222&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.0c08117&rft_dat=%3Cproquest_cross%3E2440470344%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440470344&rft_id=info:pmid/&rfr_iscdi=true