Lactone-Driven Ester-to-Amide Derivatization for Sialic Acid Linkage-Specific Alkylamidation

Sialic acid attached to nonreducing ends of glycan chains via different linkages is associated with specific interactions and physiological events. Linkage-specific derivatization of sialic acid is of great interest for distinguishing sialic acids by mass spectrometry, specifically for events govern...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2020-11, Vol.92 (21), p.14383-14392
Hauptverfasser: Furukawa, Jun-ichi, Hanamatsu, Hisatoshi, Nishikaze, Takashi, Manya, Hiroshi, Miura, Nobuaki, Yagi, Hirokazu, Yokota, Ikuko, Akasaka-Manya, Keiko, Endo, Tamao, Kanagawa, Motoi, Iwasaki, Norimasa, Tanaka, Koichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14392
container_issue 21
container_start_page 14383
container_title Analytical chemistry (Washington)
container_volume 92
creator Furukawa, Jun-ichi
Hanamatsu, Hisatoshi
Nishikaze, Takashi
Manya, Hiroshi
Miura, Nobuaki
Yagi, Hirokazu
Yokota, Ikuko
Akasaka-Manya, Keiko
Endo, Tamao
Kanagawa, Motoi
Iwasaki, Norimasa
Tanaka, Koichi
description Sialic acid attached to nonreducing ends of glycan chains via different linkages is associated with specific interactions and physiological events. Linkage-specific derivatization of sialic acid is of great interest for distinguishing sialic acids by mass spectrometry, specifically for events governed by sialyl linkage types. In the present study, we demonstrate that α-2,3/8-sialyl linkage-specific amidation of esterified sialyloligosaccharides can be achieved via an intramolecular lactone. The method of lactone-driven ester-to-amide derivatization for sialic acid linkage-specific alkylamidation, termed LEAD-SALSA, employs in-solution ester-to-amide conversion to directly generate stable and sialyl linkage-specific glycan amides from their ester form by mixing with a preferred amine, resulting in the easy assignments of sialyl linkages by comparing the signals of esterified and amidated glycan. Using this approach, we demonstrate the accumulation of altered N-glycans in cardiac muscle tissue during mouse aging. Furthermore, we find that the stability of lactone is important for ester-to-amide conversion based on experiments and density functional theory calculations of reaction energies for lactone formation. By using energy differences of lactone formation, the LEAD-SALSA method can be used not only for the sialyl linkage-specific derivatization but also for distinguishing the branching structure of galactose linked to sialic acid. This simplified and direct sialylglycan discrimination will facilitate important studies on sialylated glycoconjugates.
doi_str_mv 10.1021/acs.analchem.0c02209
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2440470263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2440470263</sourcerecordid><originalsourceid>FETCH-LOGICAL-a353t-953ceab40bc8e8ce6cef7095e1ee181f659d45ea60a3ea2a3defac7fd763deb83</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwDxgisbC4nO3ESceqLR9SJYbChhRdnQu4TZNip0jl1-PQwsDAcLrT3fPe8DB2KWAgQIobNH6ANVbmjdYDMCAlDI9YTyQSuM4yecx6AKC4TAFO2Zn3SwAhQOgee5mhaZua-MTZD6qjqW_J8bbho7UtKJpQWGNrP0M1dVQ2LppbrKyJRsYW0czWK3wlPt-QsWW3rVa7CkP0mz9nJyVWni4Ovc-eb6dP43s-e7x7GI9mHFWiWj5MlCFcxLAwGWWGtKEyhWFCgkhkotTJsIgTQg2oCCWqgko0aVmkOoyLTPXZ9f7vxjXvW_JtvrbeUFVhTc3W5zKOIU5BahXQqz_ostm64K6jtFY6TTQEKt5TxjXeOyrzjbNrdLtcQN4pz4Py_Ed5flAeYrCPddffv_9GvgDyWYlY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2466367560</pqid></control><display><type>article</type><title>Lactone-Driven Ester-to-Amide Derivatization for Sialic Acid Linkage-Specific Alkylamidation</title><source>American Chemical Society Journals</source><creator>Furukawa, Jun-ichi ; Hanamatsu, Hisatoshi ; Nishikaze, Takashi ; Manya, Hiroshi ; Miura, Nobuaki ; Yagi, Hirokazu ; Yokota, Ikuko ; Akasaka-Manya, Keiko ; Endo, Tamao ; Kanagawa, Motoi ; Iwasaki, Norimasa ; Tanaka, Koichi</creator><creatorcontrib>Furukawa, Jun-ichi ; Hanamatsu, Hisatoshi ; Nishikaze, Takashi ; Manya, Hiroshi ; Miura, Nobuaki ; Yagi, Hirokazu ; Yokota, Ikuko ; Akasaka-Manya, Keiko ; Endo, Tamao ; Kanagawa, Motoi ; Iwasaki, Norimasa ; Tanaka, Koichi</creatorcontrib><description>Sialic acid attached to nonreducing ends of glycan chains via different linkages is associated with specific interactions and physiological events. Linkage-specific derivatization of sialic acid is of great interest for distinguishing sialic acids by mass spectrometry, specifically for events governed by sialyl linkage types. In the present study, we demonstrate that α-2,3/8-sialyl linkage-specific amidation of esterified sialyloligosaccharides can be achieved via an intramolecular lactone. The method of lactone-driven ester-to-amide derivatization for sialic acid linkage-specific alkylamidation, termed LEAD-SALSA, employs in-solution ester-to-amide conversion to directly generate stable and sialyl linkage-specific glycan amides from their ester form by mixing with a preferred amine, resulting in the easy assignments of sialyl linkages by comparing the signals of esterified and amidated glycan. Using this approach, we demonstrate the accumulation of altered N-glycans in cardiac muscle tissue during mouse aging. Furthermore, we find that the stability of lactone is important for ester-to-amide conversion based on experiments and density functional theory calculations of reaction energies for lactone formation. By using energy differences of lactone formation, the LEAD-SALSA method can be used not only for the sialyl linkage-specific derivatization but also for distinguishing the branching structure of galactose linked to sialic acid. This simplified and direct sialylglycan discrimination will facilitate important studies on sialylated glycoconjugates.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.0c02209</identifier><language>eng</language><publisher>Washington: American Chemical Society</publisher><subject>Acids ; Aging ; Amides ; Animal tissues ; Cardiac muscle ; Chemistry ; Conversion ; Density functional theory ; Esterification ; Galactose ; Glycan ; Glycoconjugates ; Linkages ; Mass spectrometry ; Mass spectroscopy ; Muscles ; N-glycans ; Polysaccharides ; Sialic acids</subject><ispartof>Analytical chemistry (Washington), 2020-11, Vol.92 (21), p.14383-14392</ispartof><rights>Copyright American Chemical Society Nov 3, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a353t-953ceab40bc8e8ce6cef7095e1ee181f659d45ea60a3ea2a3defac7fd763deb83</citedby><cites>FETCH-LOGICAL-a353t-953ceab40bc8e8ce6cef7095e1ee181f659d45ea60a3ea2a3defac7fd763deb83</cites><orcidid>0000-0002-3537-8316 ; 0000-0002-7284-2261</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.0c02209$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.0c02209$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Furukawa, Jun-ichi</creatorcontrib><creatorcontrib>Hanamatsu, Hisatoshi</creatorcontrib><creatorcontrib>Nishikaze, Takashi</creatorcontrib><creatorcontrib>Manya, Hiroshi</creatorcontrib><creatorcontrib>Miura, Nobuaki</creatorcontrib><creatorcontrib>Yagi, Hirokazu</creatorcontrib><creatorcontrib>Yokota, Ikuko</creatorcontrib><creatorcontrib>Akasaka-Manya, Keiko</creatorcontrib><creatorcontrib>Endo, Tamao</creatorcontrib><creatorcontrib>Kanagawa, Motoi</creatorcontrib><creatorcontrib>Iwasaki, Norimasa</creatorcontrib><creatorcontrib>Tanaka, Koichi</creatorcontrib><title>Lactone-Driven Ester-to-Amide Derivatization for Sialic Acid Linkage-Specific Alkylamidation</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Sialic acid attached to nonreducing ends of glycan chains via different linkages is associated with specific interactions and physiological events. Linkage-specific derivatization of sialic acid is of great interest for distinguishing sialic acids by mass spectrometry, specifically for events governed by sialyl linkage types. In the present study, we demonstrate that α-2,3/8-sialyl linkage-specific amidation of esterified sialyloligosaccharides can be achieved via an intramolecular lactone. The method of lactone-driven ester-to-amide derivatization for sialic acid linkage-specific alkylamidation, termed LEAD-SALSA, employs in-solution ester-to-amide conversion to directly generate stable and sialyl linkage-specific glycan amides from their ester form by mixing with a preferred amine, resulting in the easy assignments of sialyl linkages by comparing the signals of esterified and amidated glycan. Using this approach, we demonstrate the accumulation of altered N-glycans in cardiac muscle tissue during mouse aging. Furthermore, we find that the stability of lactone is important for ester-to-amide conversion based on experiments and density functional theory calculations of reaction energies for lactone formation. By using energy differences of lactone formation, the LEAD-SALSA method can be used not only for the sialyl linkage-specific derivatization but also for distinguishing the branching structure of galactose linked to sialic acid. This simplified and direct sialylglycan discrimination will facilitate important studies on sialylated glycoconjugates.</description><subject>Acids</subject><subject>Aging</subject><subject>Amides</subject><subject>Animal tissues</subject><subject>Cardiac muscle</subject><subject>Chemistry</subject><subject>Conversion</subject><subject>Density functional theory</subject><subject>Esterification</subject><subject>Galactose</subject><subject>Glycan</subject><subject>Glycoconjugates</subject><subject>Linkages</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Muscles</subject><subject>N-glycans</subject><subject>Polysaccharides</subject><subject>Sialic acids</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwDxgisbC4nO3ESceqLR9SJYbChhRdnQu4TZNip0jl1-PQwsDAcLrT3fPe8DB2KWAgQIobNH6ANVbmjdYDMCAlDI9YTyQSuM4yecx6AKC4TAFO2Zn3SwAhQOgee5mhaZua-MTZD6qjqW_J8bbho7UtKJpQWGNrP0M1dVQ2LppbrKyJRsYW0czWK3wlPt-QsWW3rVa7CkP0mz9nJyVWni4Ovc-eb6dP43s-e7x7GI9mHFWiWj5MlCFcxLAwGWWGtKEyhWFCgkhkotTJsIgTQg2oCCWqgko0aVmkOoyLTPXZ9f7vxjXvW_JtvrbeUFVhTc3W5zKOIU5BahXQqz_ostm64K6jtFY6TTQEKt5TxjXeOyrzjbNrdLtcQN4pz4Py_Ed5flAeYrCPddffv_9GvgDyWYlY</recordid><startdate>20201103</startdate><enddate>20201103</enddate><creator>Furukawa, Jun-ichi</creator><creator>Hanamatsu, Hisatoshi</creator><creator>Nishikaze, Takashi</creator><creator>Manya, Hiroshi</creator><creator>Miura, Nobuaki</creator><creator>Yagi, Hirokazu</creator><creator>Yokota, Ikuko</creator><creator>Akasaka-Manya, Keiko</creator><creator>Endo, Tamao</creator><creator>Kanagawa, Motoi</creator><creator>Iwasaki, Norimasa</creator><creator>Tanaka, Koichi</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3537-8316</orcidid><orcidid>https://orcid.org/0000-0002-7284-2261</orcidid></search><sort><creationdate>20201103</creationdate><title>Lactone-Driven Ester-to-Amide Derivatization for Sialic Acid Linkage-Specific Alkylamidation</title><author>Furukawa, Jun-ichi ; Hanamatsu, Hisatoshi ; Nishikaze, Takashi ; Manya, Hiroshi ; Miura, Nobuaki ; Yagi, Hirokazu ; Yokota, Ikuko ; Akasaka-Manya, Keiko ; Endo, Tamao ; Kanagawa, Motoi ; Iwasaki, Norimasa ; Tanaka, Koichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a353t-953ceab40bc8e8ce6cef7095e1ee181f659d45ea60a3ea2a3defac7fd763deb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acids</topic><topic>Aging</topic><topic>Amides</topic><topic>Animal tissues</topic><topic>Cardiac muscle</topic><topic>Chemistry</topic><topic>Conversion</topic><topic>Density functional theory</topic><topic>Esterification</topic><topic>Galactose</topic><topic>Glycan</topic><topic>Glycoconjugates</topic><topic>Linkages</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Muscles</topic><topic>N-glycans</topic><topic>Polysaccharides</topic><topic>Sialic acids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Furukawa, Jun-ichi</creatorcontrib><creatorcontrib>Hanamatsu, Hisatoshi</creatorcontrib><creatorcontrib>Nishikaze, Takashi</creatorcontrib><creatorcontrib>Manya, Hiroshi</creatorcontrib><creatorcontrib>Miura, Nobuaki</creatorcontrib><creatorcontrib>Yagi, Hirokazu</creatorcontrib><creatorcontrib>Yokota, Ikuko</creatorcontrib><creatorcontrib>Akasaka-Manya, Keiko</creatorcontrib><creatorcontrib>Endo, Tamao</creatorcontrib><creatorcontrib>Kanagawa, Motoi</creatorcontrib><creatorcontrib>Iwasaki, Norimasa</creatorcontrib><creatorcontrib>Tanaka, Koichi</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Furukawa, Jun-ichi</au><au>Hanamatsu, Hisatoshi</au><au>Nishikaze, Takashi</au><au>Manya, Hiroshi</au><au>Miura, Nobuaki</au><au>Yagi, Hirokazu</au><au>Yokota, Ikuko</au><au>Akasaka-Manya, Keiko</au><au>Endo, Tamao</au><au>Kanagawa, Motoi</au><au>Iwasaki, Norimasa</au><au>Tanaka, Koichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lactone-Driven Ester-to-Amide Derivatization for Sialic Acid Linkage-Specific Alkylamidation</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2020-11-03</date><risdate>2020</risdate><volume>92</volume><issue>21</issue><spage>14383</spage><epage>14392</epage><pages>14383-14392</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>Sialic acid attached to nonreducing ends of glycan chains via different linkages is associated with specific interactions and physiological events. Linkage-specific derivatization of sialic acid is of great interest for distinguishing sialic acids by mass spectrometry, specifically for events governed by sialyl linkage types. In the present study, we demonstrate that α-2,3/8-sialyl linkage-specific amidation of esterified sialyloligosaccharides can be achieved via an intramolecular lactone. The method of lactone-driven ester-to-amide derivatization for sialic acid linkage-specific alkylamidation, termed LEAD-SALSA, employs in-solution ester-to-amide conversion to directly generate stable and sialyl linkage-specific glycan amides from their ester form by mixing with a preferred amine, resulting in the easy assignments of sialyl linkages by comparing the signals of esterified and amidated glycan. Using this approach, we demonstrate the accumulation of altered N-glycans in cardiac muscle tissue during mouse aging. Furthermore, we find that the stability of lactone is important for ester-to-amide conversion based on experiments and density functional theory calculations of reaction energies for lactone formation. By using energy differences of lactone formation, the LEAD-SALSA method can be used not only for the sialyl linkage-specific derivatization but also for distinguishing the branching structure of galactose linked to sialic acid. This simplified and direct sialylglycan discrimination will facilitate important studies on sialylated glycoconjugates.</abstract><cop>Washington</cop><pub>American Chemical Society</pub><doi>10.1021/acs.analchem.0c02209</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3537-8316</orcidid><orcidid>https://orcid.org/0000-0002-7284-2261</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2020-11, Vol.92 (21), p.14383-14392
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_2440470263
source American Chemical Society Journals
subjects Acids
Aging
Amides
Animal tissues
Cardiac muscle
Chemistry
Conversion
Density functional theory
Esterification
Galactose
Glycan
Glycoconjugates
Linkages
Mass spectrometry
Mass spectroscopy
Muscles
N-glycans
Polysaccharides
Sialic acids
title Lactone-Driven Ester-to-Amide Derivatization for Sialic Acid Linkage-Specific Alkylamidation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T11%3A30%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lactone-Driven%20Ester-to-Amide%20Derivatization%20for%20Sialic%20Acid%20Linkage-Specific%20Alkylamidation&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Furukawa,%20Jun-ichi&rft.date=2020-11-03&rft.volume=92&rft.issue=21&rft.spage=14383&rft.epage=14392&rft.pages=14383-14392&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.0c02209&rft_dat=%3Cproquest_cross%3E2440470263%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2466367560&rft_id=info:pmid/&rfr_iscdi=true