Bayesian regularization for flexible baseline hazard functions in Cox survival models
Fully Bayesian methods for Cox models specify a model for the baseline hazard function. Parametric approaches generally provide monotone estimations. Semi‐parametric choices allow for more flexible patterns but they can suffer from overfitting and instability. Regularization methods through prior di...
Gespeichert in:
Veröffentlicht in: | Biometrical journal 2021-01, Vol.63 (1), p.7-26 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 26 |
---|---|
container_issue | 1 |
container_start_page | 7 |
container_title | Biometrical journal |
container_volume | 63 |
creator | Lázaro, Elena Armero, Carmen Alvares, Danilo |
description | Fully Bayesian methods for Cox models specify a model for the baseline hazard function. Parametric approaches generally provide monotone estimations. Semi‐parametric choices allow for more flexible patterns but they can suffer from overfitting and instability. Regularization methods through prior distributions with correlated structures usually give reasonable answers to these types of situations. We discuss Bayesian regularization for Cox survival models defined via flexible baseline hazards specified by a mixture of piecewise constant functions and by a cubic B‐spline function. For those “semi‐parametric” proposals, different prior scenarios ranging from prior independence to particular correlated structures are discussed in a real study with microvirulence data and in an extensive simulation scenario that includes different data sample and time axis partition sizes in order to capture risk variations. The posterior distribution of the parameters was approximated using Markov chain Monte Carlo methods. Model selection was performed in accordance with the deviance information criteria and the log pseudo‐marginal likelihood. The results obtained reveal that, in general, Cox models present great robustness in covariate effects and survival estimates independent of the baseline hazard specification. In relation to the “semi‐parametric” baseline hazard specification, the B‐splines hazard function is less dependent on the regularization process than the piecewise specification because it demands a smaller time axis partition to estimate a similar behavior of the risk. |
doi_str_mv | 10.1002/bimj.201900211 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2440465043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2475704056</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3684-62b8433e894fefc40c0cc1eaeebfff221932710c893c77c86d008804b8a7312c3</originalsourceid><addsrcrecordid>eNqF0D1PwzAQBmALgWgprIzIEgtLyvkjiTNCxUcRiAXmyHHP4MpJwCal5deTqtCBhck66bn3rJeQYwZjBsDPK1fPxxxY0Q-M7ZAhSzlLJIhslwxBcJEIJfMBOYhxDgAFSL5PBoIrlcpCDMnzpV5hdLqhAV86r4P70h-ubahtA7Uel67ySCsd0bsG6av-0mFGbdeYtYrUNXTSLmnswsIttKd1O0MfD8me1T7i0c87Is_XV0-T2-T-8WY6ubhPjMiUTDJeKSkEqkJatEaCAWMYasTKWss5KwTPGRhVCJPnRmUzAKVAVkrngnEjRuRsk_sW2vcO40dZu2jQe91g28WSSwkyS6E_MiKnf-i87ULT_65XeZqDhDTr1XijTGhjDGjLt-BqHVYlg3JdeLkuvNwW3i-c_MR2VY2zLf9tuAdyAz6dx9U_ceXl9OGOs1yKbwOVi5E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2475704056</pqid></control><display><type>article</type><title>Bayesian regularization for flexible baseline hazard functions in Cox survival models</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lázaro, Elena ; Armero, Carmen ; Alvares, Danilo</creator><creatorcontrib>Lázaro, Elena ; Armero, Carmen ; Alvares, Danilo</creatorcontrib><description>Fully Bayesian methods for Cox models specify a model for the baseline hazard function. Parametric approaches generally provide monotone estimations. Semi‐parametric choices allow for more flexible patterns but they can suffer from overfitting and instability. Regularization methods through prior distributions with correlated structures usually give reasonable answers to these types of situations. We discuss Bayesian regularization for Cox survival models defined via flexible baseline hazards specified by a mixture of piecewise constant functions and by a cubic B‐spline function. For those “semi‐parametric” proposals, different prior scenarios ranging from prior independence to particular correlated structures are discussed in a real study with microvirulence data and in an extensive simulation scenario that includes different data sample and time axis partition sizes in order to capture risk variations. The posterior distribution of the parameters was approximated using Markov chain Monte Carlo methods. Model selection was performed in accordance with the deviance information criteria and the log pseudo‐marginal likelihood. The results obtained reveal that, in general, Cox models present great robustness in covariate effects and survival estimates independent of the baseline hazard specification. In relation to the “semi‐parametric” baseline hazard specification, the B‐splines hazard function is less dependent on the regularization process than the piecewise specification because it demands a smaller time axis partition to estimate a similar behavior of the risk.</description><identifier>ISSN: 0323-3847</identifier><identifier>EISSN: 1521-4036</identifier><identifier>DOI: 10.1002/bimj.201900211</identifier><identifier>PMID: 32885493</identifier><language>eng</language><publisher>Germany: Wiley - VCH Verlag GmbH & Co. KGaA</publisher><subject>Bayesian analysis ; correlated prior process ; cubic B‐splines ; Hazards ; Markov chains ; Mathematical models ; Monte Carlo simulation ; Partitions ; piecewise functions ; Regularization ; Regularization methods ; Risk taking ; Specifications ; Spline functions ; Survival ; survival analysis ; Weibull distribution</subject><ispartof>Biometrical journal, 2021-01, Vol.63 (1), p.7-26</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2020 Wiley-VCH GmbH.</rights><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3684-62b8433e894fefc40c0cc1eaeebfff221932710c893c77c86d008804b8a7312c3</citedby><cites>FETCH-LOGICAL-c3684-62b8433e894fefc40c0cc1eaeebfff221932710c893c77c86d008804b8a7312c3</cites><orcidid>0000-0003-3821-7769</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbimj.201900211$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbimj.201900211$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32885493$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lázaro, Elena</creatorcontrib><creatorcontrib>Armero, Carmen</creatorcontrib><creatorcontrib>Alvares, Danilo</creatorcontrib><title>Bayesian regularization for flexible baseline hazard functions in Cox survival models</title><title>Biometrical journal</title><addtitle>Biom J</addtitle><description>Fully Bayesian methods for Cox models specify a model for the baseline hazard function. Parametric approaches generally provide monotone estimations. Semi‐parametric choices allow for more flexible patterns but they can suffer from overfitting and instability. Regularization methods through prior distributions with correlated structures usually give reasonable answers to these types of situations. We discuss Bayesian regularization for Cox survival models defined via flexible baseline hazards specified by a mixture of piecewise constant functions and by a cubic B‐spline function. For those “semi‐parametric” proposals, different prior scenarios ranging from prior independence to particular correlated structures are discussed in a real study with microvirulence data and in an extensive simulation scenario that includes different data sample and time axis partition sizes in order to capture risk variations. The posterior distribution of the parameters was approximated using Markov chain Monte Carlo methods. Model selection was performed in accordance with the deviance information criteria and the log pseudo‐marginal likelihood. The results obtained reveal that, in general, Cox models present great robustness in covariate effects and survival estimates independent of the baseline hazard specification. In relation to the “semi‐parametric” baseline hazard specification, the B‐splines hazard function is less dependent on the regularization process than the piecewise specification because it demands a smaller time axis partition to estimate a similar behavior of the risk.</description><subject>Bayesian analysis</subject><subject>correlated prior process</subject><subject>cubic B‐splines</subject><subject>Hazards</subject><subject>Markov chains</subject><subject>Mathematical models</subject><subject>Monte Carlo simulation</subject><subject>Partitions</subject><subject>piecewise functions</subject><subject>Regularization</subject><subject>Regularization methods</subject><subject>Risk taking</subject><subject>Specifications</subject><subject>Spline functions</subject><subject>Survival</subject><subject>survival analysis</subject><subject>Weibull distribution</subject><issn>0323-3847</issn><issn>1521-4036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqF0D1PwzAQBmALgWgprIzIEgtLyvkjiTNCxUcRiAXmyHHP4MpJwCal5deTqtCBhck66bn3rJeQYwZjBsDPK1fPxxxY0Q-M7ZAhSzlLJIhslwxBcJEIJfMBOYhxDgAFSL5PBoIrlcpCDMnzpV5hdLqhAV86r4P70h-ubahtA7Uel67ySCsd0bsG6av-0mFGbdeYtYrUNXTSLmnswsIttKd1O0MfD8me1T7i0c87Is_XV0-T2-T-8WY6ubhPjMiUTDJeKSkEqkJatEaCAWMYasTKWss5KwTPGRhVCJPnRmUzAKVAVkrngnEjRuRsk_sW2vcO40dZu2jQe91g28WSSwkyS6E_MiKnf-i87ULT_65XeZqDhDTr1XijTGhjDGjLt-BqHVYlg3JdeLkuvNwW3i-c_MR2VY2zLf9tuAdyAz6dx9U_ceXl9OGOs1yKbwOVi5E</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Lázaro, Elena</creator><creator>Armero, Carmen</creator><creator>Alvares, Danilo</creator><general>Wiley - VCH Verlag GmbH & Co. KGaA</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3821-7769</orcidid></search><sort><creationdate>202101</creationdate><title>Bayesian regularization for flexible baseline hazard functions in Cox survival models</title><author>Lázaro, Elena ; Armero, Carmen ; Alvares, Danilo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3684-62b8433e894fefc40c0cc1eaeebfff221932710c893c77c86d008804b8a7312c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bayesian analysis</topic><topic>correlated prior process</topic><topic>cubic B‐splines</topic><topic>Hazards</topic><topic>Markov chains</topic><topic>Mathematical models</topic><topic>Monte Carlo simulation</topic><topic>Partitions</topic><topic>piecewise functions</topic><topic>Regularization</topic><topic>Regularization methods</topic><topic>Risk taking</topic><topic>Specifications</topic><topic>Spline functions</topic><topic>Survival</topic><topic>survival analysis</topic><topic>Weibull distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lázaro, Elena</creatorcontrib><creatorcontrib>Armero, Carmen</creatorcontrib><creatorcontrib>Alvares, Danilo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biometrical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lázaro, Elena</au><au>Armero, Carmen</au><au>Alvares, Danilo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian regularization for flexible baseline hazard functions in Cox survival models</atitle><jtitle>Biometrical journal</jtitle><addtitle>Biom J</addtitle><date>2021-01</date><risdate>2021</risdate><volume>63</volume><issue>1</issue><spage>7</spage><epage>26</epage><pages>7-26</pages><issn>0323-3847</issn><eissn>1521-4036</eissn><abstract>Fully Bayesian methods for Cox models specify a model for the baseline hazard function. Parametric approaches generally provide monotone estimations. Semi‐parametric choices allow for more flexible patterns but they can suffer from overfitting and instability. Regularization methods through prior distributions with correlated structures usually give reasonable answers to these types of situations. We discuss Bayesian regularization for Cox survival models defined via flexible baseline hazards specified by a mixture of piecewise constant functions and by a cubic B‐spline function. For those “semi‐parametric” proposals, different prior scenarios ranging from prior independence to particular correlated structures are discussed in a real study with microvirulence data and in an extensive simulation scenario that includes different data sample and time axis partition sizes in order to capture risk variations. The posterior distribution of the parameters was approximated using Markov chain Monte Carlo methods. Model selection was performed in accordance with the deviance information criteria and the log pseudo‐marginal likelihood. The results obtained reveal that, in general, Cox models present great robustness in covariate effects and survival estimates independent of the baseline hazard specification. In relation to the “semi‐parametric” baseline hazard specification, the B‐splines hazard function is less dependent on the regularization process than the piecewise specification because it demands a smaller time axis partition to estimate a similar behavior of the risk.</abstract><cop>Germany</cop><pub>Wiley - VCH Verlag GmbH & Co. KGaA</pub><pmid>32885493</pmid><doi>10.1002/bimj.201900211</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-3821-7769</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0323-3847 |
ispartof | Biometrical journal, 2021-01, Vol.63 (1), p.7-26 |
issn | 0323-3847 1521-4036 |
language | eng |
recordid | cdi_proquest_miscellaneous_2440465043 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Bayesian analysis correlated prior process cubic B‐splines Hazards Markov chains Mathematical models Monte Carlo simulation Partitions piecewise functions Regularization Regularization methods Risk taking Specifications Spline functions Survival survival analysis Weibull distribution |
title | Bayesian regularization for flexible baseline hazard functions in Cox survival models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T13%3A53%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20regularization%20for%20flexible%20baseline%20hazard%20functions%20in%20Cox%20survival%20models&rft.jtitle=Biometrical%20journal&rft.au=L%C3%A1zaro,%20Elena&rft.date=2021-01&rft.volume=63&rft.issue=1&rft.spage=7&rft.epage=26&rft.pages=7-26&rft.issn=0323-3847&rft.eissn=1521-4036&rft_id=info:doi/10.1002/bimj.201900211&rft_dat=%3Cproquest_cross%3E2475704056%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2475704056&rft_id=info:pmid/32885493&rfr_iscdi=true |