Bayesian regularization for flexible baseline hazard functions in Cox survival models

Fully Bayesian methods for Cox models specify a model for the baseline hazard function. Parametric approaches generally provide monotone estimations. Semi‐parametric choices allow for more flexible patterns but they can suffer from overfitting and instability. Regularization methods through prior di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrical journal 2021-01, Vol.63 (1), p.7-26
Hauptverfasser: Lázaro, Elena, Armero, Carmen, Alvares, Danilo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 26
container_issue 1
container_start_page 7
container_title Biometrical journal
container_volume 63
creator Lázaro, Elena
Armero, Carmen
Alvares, Danilo
description Fully Bayesian methods for Cox models specify a model for the baseline hazard function. Parametric approaches generally provide monotone estimations. Semi‐parametric choices allow for more flexible patterns but they can suffer from overfitting and instability. Regularization methods through prior distributions with correlated structures usually give reasonable answers to these types of situations. We discuss Bayesian regularization for Cox survival models defined via flexible baseline hazards specified by a mixture of piecewise constant functions and by a cubic B‐spline function. For those “semi‐parametric” proposals, different prior scenarios ranging from prior independence to particular correlated structures are discussed in a real study with microvirulence data and in an extensive simulation scenario that includes different data sample and time axis partition sizes in order to capture risk variations. The posterior distribution of the parameters was approximated using Markov chain Monte Carlo methods. Model selection was performed in accordance with the deviance information criteria and the log pseudo‐marginal likelihood. The results obtained reveal that, in general, Cox models present great robustness in covariate effects and survival estimates independent of the baseline hazard specification. In relation to the “semi‐parametric” baseline hazard specification, the B‐splines hazard function is less dependent on the regularization process than the piecewise specification because it demands a smaller time axis partition to estimate a similar behavior of the risk.
doi_str_mv 10.1002/bimj.201900211
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2440465043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2475704056</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3684-62b8433e894fefc40c0cc1eaeebfff221932710c893c77c86d008804b8a7312c3</originalsourceid><addsrcrecordid>eNqF0D1PwzAQBmALgWgprIzIEgtLyvkjiTNCxUcRiAXmyHHP4MpJwCal5deTqtCBhck66bn3rJeQYwZjBsDPK1fPxxxY0Q-M7ZAhSzlLJIhslwxBcJEIJfMBOYhxDgAFSL5PBoIrlcpCDMnzpV5hdLqhAV86r4P70h-ubahtA7Uel67ySCsd0bsG6av-0mFGbdeYtYrUNXTSLmnswsIttKd1O0MfD8me1T7i0c87Is_XV0-T2-T-8WY6ubhPjMiUTDJeKSkEqkJatEaCAWMYasTKWss5KwTPGRhVCJPnRmUzAKVAVkrngnEjRuRsk_sW2vcO40dZu2jQe91g28WSSwkyS6E_MiKnf-i87ULT_65XeZqDhDTr1XijTGhjDGjLt-BqHVYlg3JdeLkuvNwW3i-c_MR2VY2zLf9tuAdyAz6dx9U_ceXl9OGOs1yKbwOVi5E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2475704056</pqid></control><display><type>article</type><title>Bayesian regularization for flexible baseline hazard functions in Cox survival models</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lázaro, Elena ; Armero, Carmen ; Alvares, Danilo</creator><creatorcontrib>Lázaro, Elena ; Armero, Carmen ; Alvares, Danilo</creatorcontrib><description>Fully Bayesian methods for Cox models specify a model for the baseline hazard function. Parametric approaches generally provide monotone estimations. Semi‐parametric choices allow for more flexible patterns but they can suffer from overfitting and instability. Regularization methods through prior distributions with correlated structures usually give reasonable answers to these types of situations. We discuss Bayesian regularization for Cox survival models defined via flexible baseline hazards specified by a mixture of piecewise constant functions and by a cubic B‐spline function. For those “semi‐parametric” proposals, different prior scenarios ranging from prior independence to particular correlated structures are discussed in a real study with microvirulence data and in an extensive simulation scenario that includes different data sample and time axis partition sizes in order to capture risk variations. The posterior distribution of the parameters was approximated using Markov chain Monte Carlo methods. Model selection was performed in accordance with the deviance information criteria and the log pseudo‐marginal likelihood. The results obtained reveal that, in general, Cox models present great robustness in covariate effects and survival estimates independent of the baseline hazard specification. In relation to the “semi‐parametric” baseline hazard specification, the B‐splines hazard function is less dependent on the regularization process than the piecewise specification because it demands a smaller time axis partition to estimate a similar behavior of the risk.</description><identifier>ISSN: 0323-3847</identifier><identifier>EISSN: 1521-4036</identifier><identifier>DOI: 10.1002/bimj.201900211</identifier><identifier>PMID: 32885493</identifier><language>eng</language><publisher>Germany: Wiley - VCH Verlag GmbH &amp; Co. KGaA</publisher><subject>Bayesian analysis ; correlated prior process ; cubic B‐splines ; Hazards ; Markov chains ; Mathematical models ; Monte Carlo simulation ; Partitions ; piecewise functions ; Regularization ; Regularization methods ; Risk taking ; Specifications ; Spline functions ; Survival ; survival analysis ; Weibull distribution</subject><ispartof>Biometrical journal, 2021-01, Vol.63 (1), p.7-26</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2020 Wiley-VCH GmbH.</rights><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3684-62b8433e894fefc40c0cc1eaeebfff221932710c893c77c86d008804b8a7312c3</citedby><cites>FETCH-LOGICAL-c3684-62b8433e894fefc40c0cc1eaeebfff221932710c893c77c86d008804b8a7312c3</cites><orcidid>0000-0003-3821-7769</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbimj.201900211$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbimj.201900211$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32885493$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lázaro, Elena</creatorcontrib><creatorcontrib>Armero, Carmen</creatorcontrib><creatorcontrib>Alvares, Danilo</creatorcontrib><title>Bayesian regularization for flexible baseline hazard functions in Cox survival models</title><title>Biometrical journal</title><addtitle>Biom J</addtitle><description>Fully Bayesian methods for Cox models specify a model for the baseline hazard function. Parametric approaches generally provide monotone estimations. Semi‐parametric choices allow for more flexible patterns but they can suffer from overfitting and instability. Regularization methods through prior distributions with correlated structures usually give reasonable answers to these types of situations. We discuss Bayesian regularization for Cox survival models defined via flexible baseline hazards specified by a mixture of piecewise constant functions and by a cubic B‐spline function. For those “semi‐parametric” proposals, different prior scenarios ranging from prior independence to particular correlated structures are discussed in a real study with microvirulence data and in an extensive simulation scenario that includes different data sample and time axis partition sizes in order to capture risk variations. The posterior distribution of the parameters was approximated using Markov chain Monte Carlo methods. Model selection was performed in accordance with the deviance information criteria and the log pseudo‐marginal likelihood. The results obtained reveal that, in general, Cox models present great robustness in covariate effects and survival estimates independent of the baseline hazard specification. In relation to the “semi‐parametric” baseline hazard specification, the B‐splines hazard function is less dependent on the regularization process than the piecewise specification because it demands a smaller time axis partition to estimate a similar behavior of the risk.</description><subject>Bayesian analysis</subject><subject>correlated prior process</subject><subject>cubic B‐splines</subject><subject>Hazards</subject><subject>Markov chains</subject><subject>Mathematical models</subject><subject>Monte Carlo simulation</subject><subject>Partitions</subject><subject>piecewise functions</subject><subject>Regularization</subject><subject>Regularization methods</subject><subject>Risk taking</subject><subject>Specifications</subject><subject>Spline functions</subject><subject>Survival</subject><subject>survival analysis</subject><subject>Weibull distribution</subject><issn>0323-3847</issn><issn>1521-4036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqF0D1PwzAQBmALgWgprIzIEgtLyvkjiTNCxUcRiAXmyHHP4MpJwCal5deTqtCBhck66bn3rJeQYwZjBsDPK1fPxxxY0Q-M7ZAhSzlLJIhslwxBcJEIJfMBOYhxDgAFSL5PBoIrlcpCDMnzpV5hdLqhAV86r4P70h-ubahtA7Uel67ySCsd0bsG6av-0mFGbdeYtYrUNXTSLmnswsIttKd1O0MfD8me1T7i0c87Is_XV0-T2-T-8WY6ubhPjMiUTDJeKSkEqkJatEaCAWMYasTKWss5KwTPGRhVCJPnRmUzAKVAVkrngnEjRuRsk_sW2vcO40dZu2jQe91g28WSSwkyS6E_MiKnf-i87ULT_65XeZqDhDTr1XijTGhjDGjLt-BqHVYlg3JdeLkuvNwW3i-c_MR2VY2zLf9tuAdyAz6dx9U_ceXl9OGOs1yKbwOVi5E</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Lázaro, Elena</creator><creator>Armero, Carmen</creator><creator>Alvares, Danilo</creator><general>Wiley - VCH Verlag GmbH &amp; Co. KGaA</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3821-7769</orcidid></search><sort><creationdate>202101</creationdate><title>Bayesian regularization for flexible baseline hazard functions in Cox survival models</title><author>Lázaro, Elena ; Armero, Carmen ; Alvares, Danilo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3684-62b8433e894fefc40c0cc1eaeebfff221932710c893c77c86d008804b8a7312c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bayesian analysis</topic><topic>correlated prior process</topic><topic>cubic B‐splines</topic><topic>Hazards</topic><topic>Markov chains</topic><topic>Mathematical models</topic><topic>Monte Carlo simulation</topic><topic>Partitions</topic><topic>piecewise functions</topic><topic>Regularization</topic><topic>Regularization methods</topic><topic>Risk taking</topic><topic>Specifications</topic><topic>Spline functions</topic><topic>Survival</topic><topic>survival analysis</topic><topic>Weibull distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lázaro, Elena</creatorcontrib><creatorcontrib>Armero, Carmen</creatorcontrib><creatorcontrib>Alvares, Danilo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biometrical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lázaro, Elena</au><au>Armero, Carmen</au><au>Alvares, Danilo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian regularization for flexible baseline hazard functions in Cox survival models</atitle><jtitle>Biometrical journal</jtitle><addtitle>Biom J</addtitle><date>2021-01</date><risdate>2021</risdate><volume>63</volume><issue>1</issue><spage>7</spage><epage>26</epage><pages>7-26</pages><issn>0323-3847</issn><eissn>1521-4036</eissn><abstract>Fully Bayesian methods for Cox models specify a model for the baseline hazard function. Parametric approaches generally provide monotone estimations. Semi‐parametric choices allow for more flexible patterns but they can suffer from overfitting and instability. Regularization methods through prior distributions with correlated structures usually give reasonable answers to these types of situations. We discuss Bayesian regularization for Cox survival models defined via flexible baseline hazards specified by a mixture of piecewise constant functions and by a cubic B‐spline function. For those “semi‐parametric” proposals, different prior scenarios ranging from prior independence to particular correlated structures are discussed in a real study with microvirulence data and in an extensive simulation scenario that includes different data sample and time axis partition sizes in order to capture risk variations. The posterior distribution of the parameters was approximated using Markov chain Monte Carlo methods. Model selection was performed in accordance with the deviance information criteria and the log pseudo‐marginal likelihood. The results obtained reveal that, in general, Cox models present great robustness in covariate effects and survival estimates independent of the baseline hazard specification. In relation to the “semi‐parametric” baseline hazard specification, the B‐splines hazard function is less dependent on the regularization process than the piecewise specification because it demands a smaller time axis partition to estimate a similar behavior of the risk.</abstract><cop>Germany</cop><pub>Wiley - VCH Verlag GmbH &amp; Co. KGaA</pub><pmid>32885493</pmid><doi>10.1002/bimj.201900211</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-3821-7769</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0323-3847
ispartof Biometrical journal, 2021-01, Vol.63 (1), p.7-26
issn 0323-3847
1521-4036
language eng
recordid cdi_proquest_miscellaneous_2440465043
source Wiley Online Library Journals Frontfile Complete
subjects Bayesian analysis
correlated prior process
cubic B‐splines
Hazards
Markov chains
Mathematical models
Monte Carlo simulation
Partitions
piecewise functions
Regularization
Regularization methods
Risk taking
Specifications
Spline functions
Survival
survival analysis
Weibull distribution
title Bayesian regularization for flexible baseline hazard functions in Cox survival models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T13%3A53%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20regularization%20for%20flexible%20baseline%20hazard%20functions%20in%20Cox%20survival%20models&rft.jtitle=Biometrical%20journal&rft.au=L%C3%A1zaro,%20Elena&rft.date=2021-01&rft.volume=63&rft.issue=1&rft.spage=7&rft.epage=26&rft.pages=7-26&rft.issn=0323-3847&rft.eissn=1521-4036&rft_id=info:doi/10.1002/bimj.201900211&rft_dat=%3Cproquest_cross%3E2475704056%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2475704056&rft_id=info:pmid/32885493&rfr_iscdi=true