Generating a Machine-Learned Equation of State for Fluid Properties

Equations of state (EoS) for fluids have been a staple of engineering design and practice for over a century. Available EoS are based on the fitting of a closed-form analytical expression to suitable experimental data. The mathematical structure and the underlying physical model significantly restra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2020-10, Vol.124 (39), p.8628-8639
Hauptverfasser: Zhu, Kezheng, Müller, Erich A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8639
container_issue 39
container_start_page 8628
container_title The journal of physical chemistry. B
container_volume 124
creator Zhu, Kezheng
Müller, Erich A
description Equations of state (EoS) for fluids have been a staple of engineering design and practice for over a century. Available EoS are based on the fitting of a closed-form analytical expression to suitable experimental data. The mathematical structure and the underlying physical model significantly restrain the applicability and accuracy of the resulting EoS. This contribution explores the issues surrounding the substitution of machine-learned models for analytical EoS. In particular, we describe, as a proof of concept, the effectiveness of a machine-learned model to replicate the statistical associating fluid theory (SAFT-VR Mie) EoS for pure fluids. To quantify the effectiveness of machine-learning techniques, a large set of pseudodata is obtained from the EoS and used to train the machine-learning models. We employ artificial neural networks and Gaussian process regression to correlate and predict thermodynamic properties such as critical pressure and temperature, vapor pressures, and densities of pure model fluids; these are performed on the basis of molecular descriptors. The comparisons between the machine-learned EoS and the surrogate data set suggest that the proposed approach shows promise as a viable technique for the correlation and prediction of thermophysical properties of fluids.
doi_str_mv 10.1021/acs.jpcb.0c05806
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2439631973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2439631973</sourcerecordid><originalsourceid>FETCH-LOGICAL-a402t-f25e0b10a84650449313db021f4294fd23ad5ca58d2c66f9740f51a0d96d1e2d3</originalsourceid><addsrcrecordid>eNqNkM9LwzAYhoMoOqd3T9KjoJ1f0iZtj1L8BRMF9VzS5ItWtmRLWsT_3szN3QQDIYE878uXh5ATChMKjF5KFSYfC9VOQAEvQeyQEeUM0riL3c1dUBAH5DCEDwDGWSn2yUHGygJEwUekvkWLXvadfUtk8iDVe2cxnaL0FnVyvRzik7OJM8lzL3tMjPPJzWzodPLk3QJ932E4IntGzgIeb84xeb25fqnv0unj7X19NU1lDqxPDeMILQVZ5oJDnlcZzXQbv2FyVuVGs0xqriQvNVNCmKrIwXAqQVdCU2Q6G5Ozde_Cu-WAoW_mXVA4m0mLbggNy7NKZLQqsojCGlXeheDRNAvfzaX_aig0K3VNVNes1DUbdTFyumkf2jnqbeDXVQTO18Ants4E1aFVuMUAgBcF5bBadFVX_p-uu_7Hc-0G28foxTr6M6MbvI1W_x78GxptmVc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2439631973</pqid></control><display><type>article</type><title>Generating a Machine-Learned Equation of State for Fluid Properties</title><source>ACS Journals: American Chemical Society Web Editions</source><creator>Zhu, Kezheng ; Müller, Erich A</creator><creatorcontrib>Zhu, Kezheng ; Müller, Erich A</creatorcontrib><description>Equations of state (EoS) for fluids have been a staple of engineering design and practice for over a century. Available EoS are based on the fitting of a closed-form analytical expression to suitable experimental data. The mathematical structure and the underlying physical model significantly restrain the applicability and accuracy of the resulting EoS. This contribution explores the issues surrounding the substitution of machine-learned models for analytical EoS. In particular, we describe, as a proof of concept, the effectiveness of a machine-learned model to replicate the statistical associating fluid theory (SAFT-VR Mie) EoS for pure fluids. To quantify the effectiveness of machine-learning techniques, a large set of pseudodata is obtained from the EoS and used to train the machine-learning models. We employ artificial neural networks and Gaussian process regression to correlate and predict thermodynamic properties such as critical pressure and temperature, vapor pressures, and densities of pure model fluids; these are performed on the basis of molecular descriptors. The comparisons between the machine-learned EoS and the surrogate data set suggest that the proposed approach shows promise as a viable technique for the correlation and prediction of thermophysical properties of fluids.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.0c05806</identifier><identifier>PMID: 32870675</identifier><language>eng</language><publisher>WASHINGTON: American Chemical Society</publisher><subject>B: Liquids, Chemical and Dynamical Processes in Solution, Spectroscopy in Solution ; Chemistry ; Chemistry, Physical ; Physical Sciences ; Science &amp; Technology</subject><ispartof>The journal of physical chemistry. B, 2020-10, Vol.124 (39), p.8628-8639</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>27</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000577150000016</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-a402t-f25e0b10a84650449313db021f4294fd23ad5ca58d2c66f9740f51a0d96d1e2d3</citedby><cites>FETCH-LOGICAL-a402t-f25e0b10a84650449313db021f4294fd23ad5ca58d2c66f9740f51a0d96d1e2d3</cites><orcidid>0000-0002-1513-6686</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcb.0c05806$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcb.0c05806$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32870675$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Kezheng</creatorcontrib><creatorcontrib>Müller, Erich A</creatorcontrib><title>Generating a Machine-Learned Equation of State for Fluid Properties</title><title>The journal of physical chemistry. B</title><addtitle>J PHYS CHEM B</addtitle><addtitle>J. Phys. Chem. B</addtitle><description>Equations of state (EoS) for fluids have been a staple of engineering design and practice for over a century. Available EoS are based on the fitting of a closed-form analytical expression to suitable experimental data. The mathematical structure and the underlying physical model significantly restrain the applicability and accuracy of the resulting EoS. This contribution explores the issues surrounding the substitution of machine-learned models for analytical EoS. In particular, we describe, as a proof of concept, the effectiveness of a machine-learned model to replicate the statistical associating fluid theory (SAFT-VR Mie) EoS for pure fluids. To quantify the effectiveness of machine-learning techniques, a large set of pseudodata is obtained from the EoS and used to train the machine-learning models. We employ artificial neural networks and Gaussian process regression to correlate and predict thermodynamic properties such as critical pressure and temperature, vapor pressures, and densities of pure model fluids; these are performed on the basis of molecular descriptors. The comparisons between the machine-learned EoS and the surrogate data set suggest that the proposed approach shows promise as a viable technique for the correlation and prediction of thermophysical properties of fluids.</description><subject>B: Liquids, Chemical and Dynamical Processes in Solution, Spectroscopy in Solution</subject><subject>Chemistry</subject><subject>Chemistry, Physical</subject><subject>Physical Sciences</subject><subject>Science &amp; Technology</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkM9LwzAYhoMoOqd3T9KjoJ1f0iZtj1L8BRMF9VzS5ItWtmRLWsT_3szN3QQDIYE878uXh5ATChMKjF5KFSYfC9VOQAEvQeyQEeUM0riL3c1dUBAH5DCEDwDGWSn2yUHGygJEwUekvkWLXvadfUtk8iDVe2cxnaL0FnVyvRzik7OJM8lzL3tMjPPJzWzodPLk3QJ932E4IntGzgIeb84xeb25fqnv0unj7X19NU1lDqxPDeMILQVZ5oJDnlcZzXQbv2FyVuVGs0xqriQvNVNCmKrIwXAqQVdCU2Q6G5Ozde_Cu-WAoW_mXVA4m0mLbggNy7NKZLQqsojCGlXeheDRNAvfzaX_aig0K3VNVNes1DUbdTFyumkf2jnqbeDXVQTO18Ants4E1aFVuMUAgBcF5bBadFVX_p-uu_7Hc-0G28foxTr6M6MbvI1W_x78GxptmVc</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Zhu, Kezheng</creator><creator>Müller, Erich A</creator><general>American Chemical Society</general><general>Amer Chemical Soc</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1513-6686</orcidid></search><sort><creationdate>20201001</creationdate><title>Generating a Machine-Learned Equation of State for Fluid Properties</title><author>Zhu, Kezheng ; Müller, Erich A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a402t-f25e0b10a84650449313db021f4294fd23ad5ca58d2c66f9740f51a0d96d1e2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>B: Liquids, Chemical and Dynamical Processes in Solution, Spectroscopy in Solution</topic><topic>Chemistry</topic><topic>Chemistry, Physical</topic><topic>Physical Sciences</topic><topic>Science &amp; Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Kezheng</creatorcontrib><creatorcontrib>Müller, Erich A</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Kezheng</au><au>Müller, Erich A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generating a Machine-Learned Equation of State for Fluid Properties</atitle><jtitle>The journal of physical chemistry. B</jtitle><stitle>J PHYS CHEM B</stitle><addtitle>J. Phys. Chem. B</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>124</volume><issue>39</issue><spage>8628</spage><epage>8639</epage><pages>8628-8639</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>Equations of state (EoS) for fluids have been a staple of engineering design and practice for over a century. Available EoS are based on the fitting of a closed-form analytical expression to suitable experimental data. The mathematical structure and the underlying physical model significantly restrain the applicability and accuracy of the resulting EoS. This contribution explores the issues surrounding the substitution of machine-learned models for analytical EoS. In particular, we describe, as a proof of concept, the effectiveness of a machine-learned model to replicate the statistical associating fluid theory (SAFT-VR Mie) EoS for pure fluids. To quantify the effectiveness of machine-learning techniques, a large set of pseudodata is obtained from the EoS and used to train the machine-learning models. We employ artificial neural networks and Gaussian process regression to correlate and predict thermodynamic properties such as critical pressure and temperature, vapor pressures, and densities of pure model fluids; these are performed on the basis of molecular descriptors. The comparisons between the machine-learned EoS and the surrogate data set suggest that the proposed approach shows promise as a viable technique for the correlation and prediction of thermophysical properties of fluids.</abstract><cop>WASHINGTON</cop><pub>American Chemical Society</pub><pmid>32870675</pmid><doi>10.1021/acs.jpcb.0c05806</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1513-6686</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2020-10, Vol.124 (39), p.8628-8639
issn 1520-6106
1520-5207
language eng
recordid cdi_proquest_miscellaneous_2439631973
source ACS Journals: American Chemical Society Web Editions
subjects B: Liquids, Chemical and Dynamical Processes in Solution, Spectroscopy in Solution
Chemistry
Chemistry, Physical
Physical Sciences
Science & Technology
title Generating a Machine-Learned Equation of State for Fluid Properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A24%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generating%20a%20Machine-Learned%20Equation%20of%20State%20for%20Fluid%20Properties&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Zhu,%20Kezheng&rft.date=2020-10-01&rft.volume=124&rft.issue=39&rft.spage=8628&rft.epage=8639&rft.pages=8628-8639&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.0c05806&rft_dat=%3Cproquest_cross%3E2439631973%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2439631973&rft_id=info:pmid/32870675&rfr_iscdi=true