A Machine Learning Approach for the Automated Interpretation of Plasma Amino Acid Profiles

Abstract BACKGROUND Plasma amino acid (PAA) profiles are used in routine clinical practice for the diagnosis and monitoring of inherited disorders of amino acid metabolism, organic acidemias, and urea cycle defects. Interpretation of PAA profiles is complex and requires substantial training and expe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical chemistry (Baltimore, Md.) Md.), 2020-09, Vol.66 (9), p.1210-1218
Hauptverfasser: Wilkes, Edmund H, Emmett, Erin, Beltran, Luisa, Woodward, Gary M, Carling, Rachel S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1218
container_issue 9
container_start_page 1210
container_title Clinical chemistry (Baltimore, Md.)
container_volume 66
creator Wilkes, Edmund H
Emmett, Erin
Beltran, Luisa
Woodward, Gary M
Carling, Rachel S
description Abstract BACKGROUND Plasma amino acid (PAA) profiles are used in routine clinical practice for the diagnosis and monitoring of inherited disorders of amino acid metabolism, organic acidemias, and urea cycle defects. Interpretation of PAA profiles is complex and requires substantial training and expertise to perform. Given previous demonstrations of the ability of machine learning (ML) algorithms to interpret complex clinical biochemistry data, we sought to determine if ML-derived classifiers could interpret PAA profiles with high predictive performance. METHODS We collected PAA profiling data routinely performed within a clinical biochemistry laboratory (2084 profiles) and developed decision support classifiers with several ML algorithms. We tested the generalization performance of each classifier using a nested cross-validation (CV) procedure and examined the effect of various subsampling, feature selection, and ensemble learning strategies. RESULTS The classifiers demonstrated excellent predictive performance, with the 3 ML algorithms tested producing comparable results. The best-performing ensemble binary classifier achieved a mean precision-recall (PR) AUC of 0.957 (95% CI 0.952, 0.962) and the best-performing ensemble multiclass classifier achieved a mean F4 score of 0.788 (0.773, 0.803). CONCLUSIONS This work builds upon previous demonstrations of the utility of ML-derived decision support tools in clinical biochemistry laboratories. Our findings suggest that, pending additional validation studies, such tools could potentially be used in routine clinical practice to streamline and aid the interpretation of PAA profiles. This would be particularly useful in laboratories with limited resources and large workloads. We provide the necessary code for other laboratories to develop their own decision support tools.
doi_str_mv 10.1093/clinchem/hvaa134
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2439631208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A638509756</galeid><oup_id>10.1093/clinchem/hvaa134</oup_id><sourcerecordid>A638509756</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-1f231cbf71a7190478e7de2c8538f80c1b3226fc9dbce09643c7ff5c54d3fbb23</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EotvCnROyxAWEQv0RJ_ExqqCstIiKjwsXy3HGu64SO7UdBP8eV7vlwIXTaEbPzLwzL0IvKHlHieSXZnLeHGC-PPzUmvL6EdpQwUnViYY-RhtCiKwkrdszdJ7SbUnrtmueojPOupZISTboR48_aXNwHvAOdPTO73G_LDGUIrYh4nwA3K85zDrDiLc-Q1wiZJ1d8DhYfDPpNGvcz84H3Bs34psYrJsgPUNPrJ4SPD_FC_T9w_tvVx-r3efr7VW_q0zNZa6oZZyawbZUt1TeK4R2BGY6wTvbEUMHzlhjjRwHA0Q2NTettcKIeuR2GBi_QK-Pc4vquxVSVrNLBqZJewhrUqysaThlpCvoq3_Q27BGX9QpJkQtO1q2FurNkdrrCVT5cChX_8p7vaaktl-_qL7hnSCyFU1hyZE1MaQUwaolulnH34oSde-RevBInTwqLS9PItZhhvFvw4MpBXh7BMK6_H_cH-f8nYU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2554981853</pqid></control><display><type>article</type><title>A Machine Learning Approach for the Automated Interpretation of Plasma Amino Acid Profiles</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><creator>Wilkes, Edmund H ; Emmett, Erin ; Beltran, Luisa ; Woodward, Gary M ; Carling, Rachel S</creator><creatorcontrib>Wilkes, Edmund H ; Emmett, Erin ; Beltran, Luisa ; Woodward, Gary M ; Carling, Rachel S</creatorcontrib><description>Abstract BACKGROUND Plasma amino acid (PAA) profiles are used in routine clinical practice for the diagnosis and monitoring of inherited disorders of amino acid metabolism, organic acidemias, and urea cycle defects. Interpretation of PAA profiles is complex and requires substantial training and expertise to perform. Given previous demonstrations of the ability of machine learning (ML) algorithms to interpret complex clinical biochemistry data, we sought to determine if ML-derived classifiers could interpret PAA profiles with high predictive performance. METHODS We collected PAA profiling data routinely performed within a clinical biochemistry laboratory (2084 profiles) and developed decision support classifiers with several ML algorithms. We tested the generalization performance of each classifier using a nested cross-validation (CV) procedure and examined the effect of various subsampling, feature selection, and ensemble learning strategies. RESULTS The classifiers demonstrated excellent predictive performance, with the 3 ML algorithms tested producing comparable results. The best-performing ensemble binary classifier achieved a mean precision-recall (PR) AUC of 0.957 (95% CI 0.952, 0.962) and the best-performing ensemble multiclass classifier achieved a mean F4 score of 0.788 (0.773, 0.803). CONCLUSIONS This work builds upon previous demonstrations of the utility of ML-derived decision support tools in clinical biochemistry laboratories. Our findings suggest that, pending additional validation studies, such tools could potentially be used in routine clinical practice to streamline and aid the interpretation of PAA profiles. This would be particularly useful in laboratories with limited resources and large workloads. We provide the necessary code for other laboratories to develop their own decision support tools.</description><identifier>ISSN: 0009-9147</identifier><identifier>EISSN: 1530-8561</identifier><identifier>DOI: 10.1093/clinchem/hvaa134</identifier><identifier>PMID: 32870990</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Algorithms ; Amino acids ; Amino Acids - blood ; Automation ; Biochemistry ; Classifiers ; Clinical medicine ; Databases, Chemical - statistics &amp; numerical data ; Decision support systems ; Evaluation ; Hereditary diseases ; Humans ; Laboratories ; Learning algorithms ; Learning strategies ; Machine Learning ; Mechanization ; Performance prediction ; Physiological aspects ; Urea</subject><ispartof>Clinical chemistry (Baltimore, Md.), 2020-09, Vol.66 (9), p.1210-1218</ispartof><rights>American Association for Clinical Chemistry 2020. All rights reserved. For permissions, please email: journals.permissions@oup.com. 2020</rights><rights>American Association for Clinical Chemistry 2020. All rights reserved. For permissions, please email: journals.permissions@oup.com.</rights><rights>COPYRIGHT 2020 American Association for Clinical Chemistry, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-1f231cbf71a7190478e7de2c8538f80c1b3226fc9dbce09643c7ff5c54d3fbb23</citedby><cites>FETCH-LOGICAL-c439t-1f231cbf71a7190478e7de2c8538f80c1b3226fc9dbce09643c7ff5c54d3fbb23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1578,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32870990$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wilkes, Edmund H</creatorcontrib><creatorcontrib>Emmett, Erin</creatorcontrib><creatorcontrib>Beltran, Luisa</creatorcontrib><creatorcontrib>Woodward, Gary M</creatorcontrib><creatorcontrib>Carling, Rachel S</creatorcontrib><title>A Machine Learning Approach for the Automated Interpretation of Plasma Amino Acid Profiles</title><title>Clinical chemistry (Baltimore, Md.)</title><addtitle>Clin Chem</addtitle><description>Abstract BACKGROUND Plasma amino acid (PAA) profiles are used in routine clinical practice for the diagnosis and monitoring of inherited disorders of amino acid metabolism, organic acidemias, and urea cycle defects. Interpretation of PAA profiles is complex and requires substantial training and expertise to perform. Given previous demonstrations of the ability of machine learning (ML) algorithms to interpret complex clinical biochemistry data, we sought to determine if ML-derived classifiers could interpret PAA profiles with high predictive performance. METHODS We collected PAA profiling data routinely performed within a clinical biochemistry laboratory (2084 profiles) and developed decision support classifiers with several ML algorithms. We tested the generalization performance of each classifier using a nested cross-validation (CV) procedure and examined the effect of various subsampling, feature selection, and ensemble learning strategies. RESULTS The classifiers demonstrated excellent predictive performance, with the 3 ML algorithms tested producing comparable results. The best-performing ensemble binary classifier achieved a mean precision-recall (PR) AUC of 0.957 (95% CI 0.952, 0.962) and the best-performing ensemble multiclass classifier achieved a mean F4 score of 0.788 (0.773, 0.803). CONCLUSIONS This work builds upon previous demonstrations of the utility of ML-derived decision support tools in clinical biochemistry laboratories. Our findings suggest that, pending additional validation studies, such tools could potentially be used in routine clinical practice to streamline and aid the interpretation of PAA profiles. This would be particularly useful in laboratories with limited resources and large workloads. We provide the necessary code for other laboratories to develop their own decision support tools.</description><subject>Algorithms</subject><subject>Amino acids</subject><subject>Amino Acids - blood</subject><subject>Automation</subject><subject>Biochemistry</subject><subject>Classifiers</subject><subject>Clinical medicine</subject><subject>Databases, Chemical - statistics &amp; numerical data</subject><subject>Decision support systems</subject><subject>Evaluation</subject><subject>Hereditary diseases</subject><subject>Humans</subject><subject>Laboratories</subject><subject>Learning algorithms</subject><subject>Learning strategies</subject><subject>Machine Learning</subject><subject>Mechanization</subject><subject>Performance prediction</subject><subject>Physiological aspects</subject><subject>Urea</subject><issn>0009-9147</issn><issn>1530-8561</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkU1v1DAQhi0EotvCnROyxAWEQv0RJ_ExqqCstIiKjwsXy3HGu64SO7UdBP8eV7vlwIXTaEbPzLwzL0IvKHlHieSXZnLeHGC-PPzUmvL6EdpQwUnViYY-RhtCiKwkrdszdJ7SbUnrtmueojPOupZISTboR48_aXNwHvAOdPTO73G_LDGUIrYh4nwA3K85zDrDiLc-Q1wiZJ1d8DhYfDPpNGvcz84H3Bs34psYrJsgPUNPrJ4SPD_FC_T9w_tvVx-r3efr7VW_q0zNZa6oZZyawbZUt1TeK4R2BGY6wTvbEUMHzlhjjRwHA0Q2NTettcKIeuR2GBi_QK-Pc4vquxVSVrNLBqZJewhrUqysaThlpCvoq3_Q27BGX9QpJkQtO1q2FurNkdrrCVT5cChX_8p7vaaktl-_qL7hnSCyFU1hyZE1MaQUwaolulnH34oSde-RevBInTwqLS9PItZhhvFvw4MpBXh7BMK6_H_cH-f8nYU</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Wilkes, Edmund H</creator><creator>Emmett, Erin</creator><creator>Beltran, Luisa</creator><creator>Woodward, Gary M</creator><creator>Carling, Rachel S</creator><general>Oxford University Press</general><general>American Association for Clinical Chemistry, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>4U-</scope><scope>7QO</scope><scope>7RV</scope><scope>7TM</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>S0X</scope><scope>7X8</scope></search><sort><creationdate>20200901</creationdate><title>A Machine Learning Approach for the Automated Interpretation of Plasma Amino Acid Profiles</title><author>Wilkes, Edmund H ; Emmett, Erin ; Beltran, Luisa ; Woodward, Gary M ; Carling, Rachel S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-1f231cbf71a7190478e7de2c8538f80c1b3226fc9dbce09643c7ff5c54d3fbb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Amino acids</topic><topic>Amino Acids - blood</topic><topic>Automation</topic><topic>Biochemistry</topic><topic>Classifiers</topic><topic>Clinical medicine</topic><topic>Databases, Chemical - statistics &amp; numerical data</topic><topic>Decision support systems</topic><topic>Evaluation</topic><topic>Hereditary diseases</topic><topic>Humans</topic><topic>Laboratories</topic><topic>Learning algorithms</topic><topic>Learning strategies</topic><topic>Machine Learning</topic><topic>Mechanization</topic><topic>Performance prediction</topic><topic>Physiological aspects</topic><topic>Urea</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilkes, Edmund H</creatorcontrib><creatorcontrib>Emmett, Erin</creatorcontrib><creatorcontrib>Beltran, Luisa</creatorcontrib><creatorcontrib>Woodward, Gary M</creatorcontrib><creatorcontrib>Carling, Rachel S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>University Readers</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><jtitle>Clinical chemistry (Baltimore, Md.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilkes, Edmund H</au><au>Emmett, Erin</au><au>Beltran, Luisa</au><au>Woodward, Gary M</au><au>Carling, Rachel S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Machine Learning Approach for the Automated Interpretation of Plasma Amino Acid Profiles</atitle><jtitle>Clinical chemistry (Baltimore, Md.)</jtitle><addtitle>Clin Chem</addtitle><date>2020-09-01</date><risdate>2020</risdate><volume>66</volume><issue>9</issue><spage>1210</spage><epage>1218</epage><pages>1210-1218</pages><issn>0009-9147</issn><eissn>1530-8561</eissn><abstract>Abstract BACKGROUND Plasma amino acid (PAA) profiles are used in routine clinical practice for the diagnosis and monitoring of inherited disorders of amino acid metabolism, organic acidemias, and urea cycle defects. Interpretation of PAA profiles is complex and requires substantial training and expertise to perform. Given previous demonstrations of the ability of machine learning (ML) algorithms to interpret complex clinical biochemistry data, we sought to determine if ML-derived classifiers could interpret PAA profiles with high predictive performance. METHODS We collected PAA profiling data routinely performed within a clinical biochemistry laboratory (2084 profiles) and developed decision support classifiers with several ML algorithms. We tested the generalization performance of each classifier using a nested cross-validation (CV) procedure and examined the effect of various subsampling, feature selection, and ensemble learning strategies. RESULTS The classifiers demonstrated excellent predictive performance, with the 3 ML algorithms tested producing comparable results. The best-performing ensemble binary classifier achieved a mean precision-recall (PR) AUC of 0.957 (95% CI 0.952, 0.962) and the best-performing ensemble multiclass classifier achieved a mean F4 score of 0.788 (0.773, 0.803). CONCLUSIONS This work builds upon previous demonstrations of the utility of ML-derived decision support tools in clinical biochemistry laboratories. Our findings suggest that, pending additional validation studies, such tools could potentially be used in routine clinical practice to streamline and aid the interpretation of PAA profiles. This would be particularly useful in laboratories with limited resources and large workloads. We provide the necessary code for other laboratories to develop their own decision support tools.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>32870990</pmid><doi>10.1093/clinchem/hvaa134</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0009-9147
ispartof Clinical chemistry (Baltimore, Md.), 2020-09, Vol.66 (9), p.1210-1218
issn 0009-9147
1530-8561
language eng
recordid cdi_proquest_miscellaneous_2439631208
source Oxford University Press Journals All Titles (1996-Current); MEDLINE
subjects Algorithms
Amino acids
Amino Acids - blood
Automation
Biochemistry
Classifiers
Clinical medicine
Databases, Chemical - statistics & numerical data
Decision support systems
Evaluation
Hereditary diseases
Humans
Laboratories
Learning algorithms
Learning strategies
Machine Learning
Mechanization
Performance prediction
Physiological aspects
Urea
title A Machine Learning Approach for the Automated Interpretation of Plasma Amino Acid Profiles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A22%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Machine%20Learning%20Approach%20for%20the%20Automated%20Interpretation%20of%20Plasma%20Amino%20Acid%20Profiles&rft.jtitle=Clinical%20chemistry%20(Baltimore,%20Md.)&rft.au=Wilkes,%20Edmund%20H&rft.date=2020-09-01&rft.volume=66&rft.issue=9&rft.spage=1210&rft.epage=1218&rft.pages=1210-1218&rft.issn=0009-9147&rft.eissn=1530-8561&rft_id=info:doi/10.1093/clinchem/hvaa134&rft_dat=%3Cgale_proqu%3EA638509756%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2554981853&rft_id=info:pmid/32870990&rft_galeid=A638509756&rft_oup_id=10.1093/clinchem/hvaa134&rfr_iscdi=true