Use of artificial intelligence in computed tomography dose optimisation

The field of artificial intelligence (AI) is transforming almost every aspect of modern society, including medical imaging. In computed tomography (CT), AI holds the promise of enabling further reductions in patient radiation dose through automation and optimisation of data acquisition processes, in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of the ICRP 2020-12, Vol.49 (1_suppl), p.113-125
Hauptverfasser: McCollough, C.H., Leng, S.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 125
container_issue 1_suppl
container_start_page 113
container_title Annals of the ICRP
container_volume 49
creator McCollough, C.H.
Leng, S.
description The field of artificial intelligence (AI) is transforming almost every aspect of modern society, including medical imaging. In computed tomography (CT), AI holds the promise of enabling further reductions in patient radiation dose through automation and optimisation of data acquisition processes, including patient positioning and acquisition parameter settings. Subsequent to data collection, optimisation of image reconstruction parameters, advanced reconstruction algorithms, and image denoising methods improve several aspects of image quality, especially in reducing image noise and enabling the use of lower radiation doses for data acquisition. Finally, AI-based methods to automatically segment organs or detect and characterise pathology have been translated out of the research environment and into clinical practice to bring automation, increased sensitivity, and new clinical applications to patient care, ultimately increasing the benefit to the patient from medically justified CT examinations. In summary, since the introduction of CT, a large number of technical advances have enabled increased clinical benefit and decreased patient risk, not only by reducing radiation dose, but also by reducing the likelihood of errors in the performance and interpretation of medically justified CT examinations.
doi_str_mv 10.1177/0146645320940827
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2439630106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0146645320940827</sage_id><sourcerecordid>2439630106</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2947-70950ea0fbaeec302bb5bd5660f96e8dc948d8972c7c91ab62d0199939313c6d3</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EoqWwM6GMLIGzndjxiCpakCqxUIktcmynuEriYCdD_z2OWhiQmE6n-97Tu4fQLYYHjDl_BJwxluWUgMigIPwMzXHBSSqY-DhH8-mcTvcZugphDwAZo_wSzSgpOAAWc7TeBpO4OpF-sLVVVjaJ7QbTNHZnOmXikijX9uNgdDK41u287D8PiXaTrB9sa4McrOuu0UUtm2BuTnOBtqvn9-VLunlbvy6fNqkiIuMpB5GDkVBX0hhFgVRVXumcMagFM4VWIit0IThRXAksK0Z0jCkEFRRTxTRdoPujb-_d12jCUMYEKuaVnXFjKElGBaOAgUUUjqjyLgRv6rL3tpX-UGIop_rKv_VFyd3Jfaxao38FP31FID0CQe5MuXej7-K3_xt-A7twdz8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2439630106</pqid></control><display><type>article</type><title>Use of artificial intelligence in computed tomography dose optimisation</title><source>SAGE Journals</source><creator>McCollough, C.H. ; Leng, S.</creator><creatorcontrib>McCollough, C.H. ; Leng, S.</creatorcontrib><description>The field of artificial intelligence (AI) is transforming almost every aspect of modern society, including medical imaging. In computed tomography (CT), AI holds the promise of enabling further reductions in patient radiation dose through automation and optimisation of data acquisition processes, including patient positioning and acquisition parameter settings. Subsequent to data collection, optimisation of image reconstruction parameters, advanced reconstruction algorithms, and image denoising methods improve several aspects of image quality, especially in reducing image noise and enabling the use of lower radiation doses for data acquisition. Finally, AI-based methods to automatically segment organs or detect and characterise pathology have been translated out of the research environment and into clinical practice to bring automation, increased sensitivity, and new clinical applications to patient care, ultimately increasing the benefit to the patient from medically justified CT examinations. In summary, since the introduction of CT, a large number of technical advances have enabled increased clinical benefit and decreased patient risk, not only by reducing radiation dose, but also by reducing the likelihood of errors in the performance and interpretation of medically justified CT examinations.</description><identifier>ISSN: 0146-6453</identifier><identifier>EISSN: 1872-969X</identifier><identifier>DOI: 10.1177/0146645320940827</identifier><identifier>PMID: 32870019</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><ispartof>Annals of the ICRP, 2020-12, Vol.49 (1_suppl), p.113-125</ispartof><rights>International Commission of Radiological Protection</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2947-70950ea0fbaeec302bb5bd5660f96e8dc948d8972c7c91ab62d0199939313c6d3</citedby><cites>FETCH-LOGICAL-c2947-70950ea0fbaeec302bb5bd5660f96e8dc948d8972c7c91ab62d0199939313c6d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0146645320940827$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0146645320940827$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,777,781,21800,27905,27906,43602,43603</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32870019$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McCollough, C.H.</creatorcontrib><creatorcontrib>Leng, S.</creatorcontrib><title>Use of artificial intelligence in computed tomography dose optimisation</title><title>Annals of the ICRP</title><addtitle>Ann ICRP</addtitle><description>The field of artificial intelligence (AI) is transforming almost every aspect of modern society, including medical imaging. In computed tomography (CT), AI holds the promise of enabling further reductions in patient radiation dose through automation and optimisation of data acquisition processes, including patient positioning and acquisition parameter settings. Subsequent to data collection, optimisation of image reconstruction parameters, advanced reconstruction algorithms, and image denoising methods improve several aspects of image quality, especially in reducing image noise and enabling the use of lower radiation doses for data acquisition. Finally, AI-based methods to automatically segment organs or detect and characterise pathology have been translated out of the research environment and into clinical practice to bring automation, increased sensitivity, and new clinical applications to patient care, ultimately increasing the benefit to the patient from medically justified CT examinations. In summary, since the introduction of CT, a large number of technical advances have enabled increased clinical benefit and decreased patient risk, not only by reducing radiation dose, but also by reducing the likelihood of errors in the performance and interpretation of medically justified CT examinations.</description><issn>0146-6453</issn><issn>1872-969X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAQhS0EoqWwM6GMLIGzndjxiCpakCqxUIktcmynuEriYCdD_z2OWhiQmE6n-97Tu4fQLYYHjDl_BJwxluWUgMigIPwMzXHBSSqY-DhH8-mcTvcZugphDwAZo_wSzSgpOAAWc7TeBpO4OpF-sLVVVjaJ7QbTNHZnOmXikijX9uNgdDK41u287D8PiXaTrB9sa4McrOuu0UUtm2BuTnOBtqvn9-VLunlbvy6fNqkiIuMpB5GDkVBX0hhFgVRVXumcMagFM4VWIit0IThRXAksK0Z0jCkEFRRTxTRdoPujb-_d12jCUMYEKuaVnXFjKElGBaOAgUUUjqjyLgRv6rL3tpX-UGIop_rKv_VFyd3Jfaxao38FP31FID0CQe5MuXej7-K3_xt-A7twdz8</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>McCollough, C.H.</creator><creator>Leng, S.</creator><general>SAGE Publications</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202012</creationdate><title>Use of artificial intelligence in computed tomography dose optimisation</title><author>McCollough, C.H. ; Leng, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2947-70950ea0fbaeec302bb5bd5660f96e8dc948d8972c7c91ab62d0199939313c6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McCollough, C.H.</creatorcontrib><creatorcontrib>Leng, S.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Annals of the ICRP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McCollough, C.H.</au><au>Leng, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of artificial intelligence in computed tomography dose optimisation</atitle><jtitle>Annals of the ICRP</jtitle><addtitle>Ann ICRP</addtitle><date>2020-12</date><risdate>2020</risdate><volume>49</volume><issue>1_suppl</issue><spage>113</spage><epage>125</epage><pages>113-125</pages><issn>0146-6453</issn><eissn>1872-969X</eissn><abstract>The field of artificial intelligence (AI) is transforming almost every aspect of modern society, including medical imaging. In computed tomography (CT), AI holds the promise of enabling further reductions in patient radiation dose through automation and optimisation of data acquisition processes, including patient positioning and acquisition parameter settings. Subsequent to data collection, optimisation of image reconstruction parameters, advanced reconstruction algorithms, and image denoising methods improve several aspects of image quality, especially in reducing image noise and enabling the use of lower radiation doses for data acquisition. Finally, AI-based methods to automatically segment organs or detect and characterise pathology have been translated out of the research environment and into clinical practice to bring automation, increased sensitivity, and new clinical applications to patient care, ultimately increasing the benefit to the patient from medically justified CT examinations. In summary, since the introduction of CT, a large number of technical advances have enabled increased clinical benefit and decreased patient risk, not only by reducing radiation dose, but also by reducing the likelihood of errors in the performance and interpretation of medically justified CT examinations.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>32870019</pmid><doi>10.1177/0146645320940827</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0146-6453
ispartof Annals of the ICRP, 2020-12, Vol.49 (1_suppl), p.113-125
issn 0146-6453
1872-969X
language eng
recordid cdi_proquest_miscellaneous_2439630106
source SAGE Journals
title Use of artificial intelligence in computed tomography dose optimisation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A17%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20artificial%20intelligence%20in%20computed%20tomography%20dose%20optimisation&rft.jtitle=Annals%20of%20the%20ICRP&rft.au=McCollough,%20C.H.&rft.date=2020-12&rft.volume=49&rft.issue=1_suppl&rft.spage=113&rft.epage=125&rft.pages=113-125&rft.issn=0146-6453&rft.eissn=1872-969X&rft_id=info:doi/10.1177/0146645320940827&rft_dat=%3Cproquest_cross%3E2439630106%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2439630106&rft_id=info:pmid/32870019&rft_sage_id=10.1177_0146645320940827&rfr_iscdi=true