Use of artificial intelligence in computed tomography dose optimisation
The field of artificial intelligence (AI) is transforming almost every aspect of modern society, including medical imaging. In computed tomography (CT), AI holds the promise of enabling further reductions in patient radiation dose through automation and optimisation of data acquisition processes, in...
Gespeichert in:
Veröffentlicht in: | Annals of the ICRP 2020-12, Vol.49 (1_suppl), p.113-125 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 125 |
---|---|
container_issue | 1_suppl |
container_start_page | 113 |
container_title | Annals of the ICRP |
container_volume | 49 |
creator | McCollough, C.H. Leng, S. |
description | The field of artificial intelligence (AI) is transforming almost every aspect of modern society, including medical imaging. In computed tomography (CT), AI holds the promise of enabling further reductions in patient radiation dose through automation and optimisation of data acquisition processes, including patient positioning and acquisition parameter settings. Subsequent to data collection, optimisation of image reconstruction parameters, advanced reconstruction algorithms, and image denoising methods improve several aspects of image quality, especially in reducing image noise and enabling the use of lower radiation doses for data acquisition. Finally, AI-based methods to automatically segment organs or detect and characterise pathology have been translated out of the research environment and into clinical practice to bring automation, increased sensitivity, and new clinical applications to patient care, ultimately increasing the benefit to the patient from medically justified CT examinations. In summary, since the introduction of CT, a large number of technical advances have enabled increased clinical benefit and decreased patient risk, not only by reducing radiation dose, but also by reducing the likelihood of errors in the performance and interpretation of medically justified CT examinations. |
doi_str_mv | 10.1177/0146645320940827 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2439630106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0146645320940827</sage_id><sourcerecordid>2439630106</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2947-70950ea0fbaeec302bb5bd5660f96e8dc948d8972c7c91ab62d0199939313c6d3</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EoqWwM6GMLIGzndjxiCpakCqxUIktcmynuEriYCdD_z2OWhiQmE6n-97Tu4fQLYYHjDl_BJwxluWUgMigIPwMzXHBSSqY-DhH8-mcTvcZugphDwAZo_wSzSgpOAAWc7TeBpO4OpF-sLVVVjaJ7QbTNHZnOmXikijX9uNgdDK41u287D8PiXaTrB9sa4McrOuu0UUtm2BuTnOBtqvn9-VLunlbvy6fNqkiIuMpB5GDkVBX0hhFgVRVXumcMagFM4VWIit0IThRXAksK0Z0jCkEFRRTxTRdoPujb-_d12jCUMYEKuaVnXFjKElGBaOAgUUUjqjyLgRv6rL3tpX-UGIop_rKv_VFyd3Jfaxao38FP31FID0CQe5MuXej7-K3_xt-A7twdz8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2439630106</pqid></control><display><type>article</type><title>Use of artificial intelligence in computed tomography dose optimisation</title><source>SAGE Journals</source><creator>McCollough, C.H. ; Leng, S.</creator><creatorcontrib>McCollough, C.H. ; Leng, S.</creatorcontrib><description>The field of artificial intelligence (AI) is transforming almost every aspect of modern society, including medical imaging. In computed tomography (CT), AI holds the promise of enabling further reductions in patient radiation dose through automation and optimisation of data acquisition processes, including patient positioning and acquisition parameter settings. Subsequent to data collection, optimisation of image reconstruction parameters, advanced reconstruction algorithms, and image denoising methods improve several aspects of image quality, especially in reducing image noise and enabling the use of lower radiation doses for data acquisition. Finally, AI-based methods to automatically segment organs or detect and characterise pathology have been translated out of the research environment and into clinical practice to bring automation, increased sensitivity, and new clinical applications to patient care, ultimately increasing the benefit to the patient from medically justified CT examinations. In summary, since the introduction of CT, a large number of technical advances have enabled increased clinical benefit and decreased patient risk, not only by reducing radiation dose, but also by reducing the likelihood of errors in the performance and interpretation of medically justified CT examinations.</description><identifier>ISSN: 0146-6453</identifier><identifier>EISSN: 1872-969X</identifier><identifier>DOI: 10.1177/0146645320940827</identifier><identifier>PMID: 32870019</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><ispartof>Annals of the ICRP, 2020-12, Vol.49 (1_suppl), p.113-125</ispartof><rights>International Commission of Radiological Protection</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2947-70950ea0fbaeec302bb5bd5660f96e8dc948d8972c7c91ab62d0199939313c6d3</citedby><cites>FETCH-LOGICAL-c2947-70950ea0fbaeec302bb5bd5660f96e8dc948d8972c7c91ab62d0199939313c6d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0146645320940827$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0146645320940827$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,777,781,21800,27905,27906,43602,43603</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32870019$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McCollough, C.H.</creatorcontrib><creatorcontrib>Leng, S.</creatorcontrib><title>Use of artificial intelligence in computed tomography dose optimisation</title><title>Annals of the ICRP</title><addtitle>Ann ICRP</addtitle><description>The field of artificial intelligence (AI) is transforming almost every aspect of modern society, including medical imaging. In computed tomography (CT), AI holds the promise of enabling further reductions in patient radiation dose through automation and optimisation of data acquisition processes, including patient positioning and acquisition parameter settings. Subsequent to data collection, optimisation of image reconstruction parameters, advanced reconstruction algorithms, and image denoising methods improve several aspects of image quality, especially in reducing image noise and enabling the use of lower radiation doses for data acquisition. Finally, AI-based methods to automatically segment organs or detect and characterise pathology have been translated out of the research environment and into clinical practice to bring automation, increased sensitivity, and new clinical applications to patient care, ultimately increasing the benefit to the patient from medically justified CT examinations. In summary, since the introduction of CT, a large number of technical advances have enabled increased clinical benefit and decreased patient risk, not only by reducing radiation dose, but also by reducing the likelihood of errors in the performance and interpretation of medically justified CT examinations.</description><issn>0146-6453</issn><issn>1872-969X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAQhS0EoqWwM6GMLIGzndjxiCpakCqxUIktcmynuEriYCdD_z2OWhiQmE6n-97Tu4fQLYYHjDl_BJwxluWUgMigIPwMzXHBSSqY-DhH8-mcTvcZugphDwAZo_wSzSgpOAAWc7TeBpO4OpF-sLVVVjaJ7QbTNHZnOmXikijX9uNgdDK41u287D8PiXaTrB9sa4McrOuu0UUtm2BuTnOBtqvn9-VLunlbvy6fNqkiIuMpB5GDkVBX0hhFgVRVXumcMagFM4VWIit0IThRXAksK0Z0jCkEFRRTxTRdoPujb-_d12jCUMYEKuaVnXFjKElGBaOAgUUUjqjyLgRv6rL3tpX-UGIop_rKv_VFyd3Jfaxao38FP31FID0CQe5MuXej7-K3_xt-A7twdz8</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>McCollough, C.H.</creator><creator>Leng, S.</creator><general>SAGE Publications</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202012</creationdate><title>Use of artificial intelligence in computed tomography dose optimisation</title><author>McCollough, C.H. ; Leng, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2947-70950ea0fbaeec302bb5bd5660f96e8dc948d8972c7c91ab62d0199939313c6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McCollough, C.H.</creatorcontrib><creatorcontrib>Leng, S.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Annals of the ICRP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McCollough, C.H.</au><au>Leng, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of artificial intelligence in computed tomography dose optimisation</atitle><jtitle>Annals of the ICRP</jtitle><addtitle>Ann ICRP</addtitle><date>2020-12</date><risdate>2020</risdate><volume>49</volume><issue>1_suppl</issue><spage>113</spage><epage>125</epage><pages>113-125</pages><issn>0146-6453</issn><eissn>1872-969X</eissn><abstract>The field of artificial intelligence (AI) is transforming almost every aspect of modern society, including medical imaging. In computed tomography (CT), AI holds the promise of enabling further reductions in patient radiation dose through automation and optimisation of data acquisition processes, including patient positioning and acquisition parameter settings. Subsequent to data collection, optimisation of image reconstruction parameters, advanced reconstruction algorithms, and image denoising methods improve several aspects of image quality, especially in reducing image noise and enabling the use of lower radiation doses for data acquisition. Finally, AI-based methods to automatically segment organs or detect and characterise pathology have been translated out of the research environment and into clinical practice to bring automation, increased sensitivity, and new clinical applications to patient care, ultimately increasing the benefit to the patient from medically justified CT examinations. In summary, since the introduction of CT, a large number of technical advances have enabled increased clinical benefit and decreased patient risk, not only by reducing radiation dose, but also by reducing the likelihood of errors in the performance and interpretation of medically justified CT examinations.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>32870019</pmid><doi>10.1177/0146645320940827</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0146-6453 |
ispartof | Annals of the ICRP, 2020-12, Vol.49 (1_suppl), p.113-125 |
issn | 0146-6453 1872-969X |
language | eng |
recordid | cdi_proquest_miscellaneous_2439630106 |
source | SAGE Journals |
title | Use of artificial intelligence in computed tomography dose optimisation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A17%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20artificial%20intelligence%20in%20computed%20tomography%20dose%20optimisation&rft.jtitle=Annals%20of%20the%20ICRP&rft.au=McCollough,%20C.H.&rft.date=2020-12&rft.volume=49&rft.issue=1_suppl&rft.spage=113&rft.epage=125&rft.pages=113-125&rft.issn=0146-6453&rft.eissn=1872-969X&rft_id=info:doi/10.1177/0146645320940827&rft_dat=%3Cproquest_cross%3E2439630106%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2439630106&rft_id=info:pmid/32870019&rft_sage_id=10.1177_0146645320940827&rfr_iscdi=true |