Direct Observation of Cell Surface Sialylation by Atomic Force Microscopy Employing Boronic Acid–Sialic Acid Reversible Interaction

Tracing cell surface sialylation dynamics at a scale of the glycolipoprotein microdomain (lipid rafts) formations remains an intriguing challenge of cellular biology. Here, we demonstrate that this goal is accessible, taking advantage of a boronic acid (BA)-based reversible molecular recognition che...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2020-09, Vol.92 (17), p.11714-11720
Hauptverfasser: Osawa, Shigehito, Matsumoto, Akira, Maejima, Yukie, Suzuki, Toshihiro, Miyahara, Yuji, Otsuka, Hidenori
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11720
container_issue 17
container_start_page 11714
container_title Analytical chemistry (Washington)
container_volume 92
creator Osawa, Shigehito
Matsumoto, Akira
Maejima, Yukie
Suzuki, Toshihiro
Miyahara, Yuji
Otsuka, Hidenori
description Tracing cell surface sialylation dynamics at a scale of the glycolipoprotein microdomain (lipid rafts) formations remains an intriguing challenge of cellular biology. Here, we demonstrate that this goal is accessible, taking advantage of a boronic acid (BA)-based reversible molecular recognition chemistry. A BA-end-functionalized poly­(ethylene glycol) was decorated onto an atomic force microscopy (AFM) cantilever, which provided a dynamic and sialic acid (SA)-specific imaging mode. Using this technique, we were able to heat map the SA expression levels not only on protein-decorated substrates but also directly on the cell surfaces, with a submicrometer scale resolution that may be relevant to that of the lipid rafts formation. The SA specificity and the binding reversibility of the probe were confirmed from its pH-dependent characteristics and an inhibition assay using free state SA. This finding may provide a noninvasive means for assessing a variety of SA-involved glycosylation dynamics spanning from physiology to pathology.
doi_str_mv 10.1021/acs.analchem.0c01705
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2439627458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2439627458</sourcerecordid><originalsourceid>FETCH-LOGICAL-a442t-1e24708241e7ece524525c6f63a37fdd047177992982a31b868e6648492961603</originalsourceid><addsrcrecordid>eNp9kcFO3DAURS1EVQbaP0DIEptuMn12HNtZTqfQIlEhlXYdOZ4XMEriwU6QsuumX8Af9kvqaAYWXXRl2e_cY9mXkFMGSwacfTQ2Lk1vWnuP3RIsMAXFAVmwgkMmteaHZAEAecYVwBE5jvEBgDFg8i05yrmWSpTFgvz-7ALagd7UEcOTGZzvqW_oGtuW3o6hMRbprTPt1O5m9URXg--cpZc-pNk3Z4OP1m8netFtWz-5_o5-8sH3CVlZt_nz63nO73f0Oz5hiK5ukV71AwZjZ-078qYxbcT3-_WE_Ly8-LH-ml3ffLlar64zIwQfMoZcKNBcMFRoseCi4IWVjcxNrprNBoRiSpUlLzU3Oau11Cil0CKdSCYhPyEfdt5t8I8jxqHqXLTpraZHP8aKi7yUXIlCJ_T8H_TBjyH990yJZC4YzEKxo-ZfiAGbahtcZ8JUMajmmqpUU_VSU7WvKcXO9vKx7nDzGnrpJQGwA-b468X_df4FVyChrg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448685100</pqid></control><display><type>article</type><title>Direct Observation of Cell Surface Sialylation by Atomic Force Microscopy Employing Boronic Acid–Sialic Acid Reversible Interaction</title><source>MEDLINE</source><source>ACS Publications</source><creator>Osawa, Shigehito ; Matsumoto, Akira ; Maejima, Yukie ; Suzuki, Toshihiro ; Miyahara, Yuji ; Otsuka, Hidenori</creator><creatorcontrib>Osawa, Shigehito ; Matsumoto, Akira ; Maejima, Yukie ; Suzuki, Toshihiro ; Miyahara, Yuji ; Otsuka, Hidenori</creatorcontrib><description>Tracing cell surface sialylation dynamics at a scale of the glycolipoprotein microdomain (lipid rafts) formations remains an intriguing challenge of cellular biology. Here, we demonstrate that this goal is accessible, taking advantage of a boronic acid (BA)-based reversible molecular recognition chemistry. A BA-end-functionalized poly­(ethylene glycol) was decorated onto an atomic force microscopy (AFM) cantilever, which provided a dynamic and sialic acid (SA)-specific imaging mode. Using this technique, we were able to heat map the SA expression levels not only on protein-decorated substrates but also directly on the cell surfaces, with a submicrometer scale resolution that may be relevant to that of the lipid rafts formation. The SA specificity and the binding reversibility of the probe were confirmed from its pH-dependent characteristics and an inhibition assay using free state SA. This finding may provide a noninvasive means for assessing a variety of SA-involved glycosylation dynamics spanning from physiology to pathology.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.0c01705</identifier><identifier>PMID: 32867495</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Acids ; Atomic force microscopy ; Boronic Acids - chemistry ; Cell Membrane ; Cell surface ; Chemistry ; Glycosylation ; Humans ; Lipid rafts ; Lipids ; Microscopy ; Microscopy, Atomic Force - methods ; N-Acetylneuraminic Acid - chemistry ; pH effects ; Polyethylene glycol ; Rafts ; Substrates</subject><ispartof>Analytical chemistry (Washington), 2020-09, Vol.92 (17), p.11714-11720</ispartof><rights>Copyright American Chemical Society Sep 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a442t-1e24708241e7ece524525c6f63a37fdd047177992982a31b868e6648492961603</citedby><cites>FETCH-LOGICAL-a442t-1e24708241e7ece524525c6f63a37fdd047177992982a31b868e6648492961603</cites><orcidid>0000-0002-7568-8677 ; 0000-0003-2205-6497 ; 0000-0003-2703-0958</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.0c01705$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.0c01705$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32867495$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Osawa, Shigehito</creatorcontrib><creatorcontrib>Matsumoto, Akira</creatorcontrib><creatorcontrib>Maejima, Yukie</creatorcontrib><creatorcontrib>Suzuki, Toshihiro</creatorcontrib><creatorcontrib>Miyahara, Yuji</creatorcontrib><creatorcontrib>Otsuka, Hidenori</creatorcontrib><title>Direct Observation of Cell Surface Sialylation by Atomic Force Microscopy Employing Boronic Acid–Sialic Acid Reversible Interaction</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Tracing cell surface sialylation dynamics at a scale of the glycolipoprotein microdomain (lipid rafts) formations remains an intriguing challenge of cellular biology. Here, we demonstrate that this goal is accessible, taking advantage of a boronic acid (BA)-based reversible molecular recognition chemistry. A BA-end-functionalized poly­(ethylene glycol) was decorated onto an atomic force microscopy (AFM) cantilever, which provided a dynamic and sialic acid (SA)-specific imaging mode. Using this technique, we were able to heat map the SA expression levels not only on protein-decorated substrates but also directly on the cell surfaces, with a submicrometer scale resolution that may be relevant to that of the lipid rafts formation. The SA specificity and the binding reversibility of the probe were confirmed from its pH-dependent characteristics and an inhibition assay using free state SA. This finding may provide a noninvasive means for assessing a variety of SA-involved glycosylation dynamics spanning from physiology to pathology.</description><subject>Acids</subject><subject>Atomic force microscopy</subject><subject>Boronic Acids - chemistry</subject><subject>Cell Membrane</subject><subject>Cell surface</subject><subject>Chemistry</subject><subject>Glycosylation</subject><subject>Humans</subject><subject>Lipid rafts</subject><subject>Lipids</subject><subject>Microscopy</subject><subject>Microscopy, Atomic Force - methods</subject><subject>N-Acetylneuraminic Acid - chemistry</subject><subject>pH effects</subject><subject>Polyethylene glycol</subject><subject>Rafts</subject><subject>Substrates</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kcFO3DAURS1EVQbaP0DIEptuMn12HNtZTqfQIlEhlXYdOZ4XMEriwU6QsuumX8Af9kvqaAYWXXRl2e_cY9mXkFMGSwacfTQ2Lk1vWnuP3RIsMAXFAVmwgkMmteaHZAEAecYVwBE5jvEBgDFg8i05yrmWSpTFgvz-7ALagd7UEcOTGZzvqW_oGtuW3o6hMRbprTPt1O5m9URXg--cpZc-pNk3Z4OP1m8netFtWz-5_o5-8sH3CVlZt_nz63nO73f0Oz5hiK5ukV71AwZjZ-078qYxbcT3-_WE_Ly8-LH-ml3ffLlar64zIwQfMoZcKNBcMFRoseCi4IWVjcxNrprNBoRiSpUlLzU3Oau11Cil0CKdSCYhPyEfdt5t8I8jxqHqXLTpraZHP8aKi7yUXIlCJ_T8H_TBjyH990yJZC4YzEKxo-ZfiAGbahtcZ8JUMajmmqpUU_VSU7WvKcXO9vKx7nDzGnrpJQGwA-b468X_df4FVyChrg</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Osawa, Shigehito</creator><creator>Matsumoto, Akira</creator><creator>Maejima, Yukie</creator><creator>Suzuki, Toshihiro</creator><creator>Miyahara, Yuji</creator><creator>Otsuka, Hidenori</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7568-8677</orcidid><orcidid>https://orcid.org/0000-0003-2205-6497</orcidid><orcidid>https://orcid.org/0000-0003-2703-0958</orcidid></search><sort><creationdate>20200901</creationdate><title>Direct Observation of Cell Surface Sialylation by Atomic Force Microscopy Employing Boronic Acid–Sialic Acid Reversible Interaction</title><author>Osawa, Shigehito ; Matsumoto, Akira ; Maejima, Yukie ; Suzuki, Toshihiro ; Miyahara, Yuji ; Otsuka, Hidenori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a442t-1e24708241e7ece524525c6f63a37fdd047177992982a31b868e6648492961603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acids</topic><topic>Atomic force microscopy</topic><topic>Boronic Acids - chemistry</topic><topic>Cell Membrane</topic><topic>Cell surface</topic><topic>Chemistry</topic><topic>Glycosylation</topic><topic>Humans</topic><topic>Lipid rafts</topic><topic>Lipids</topic><topic>Microscopy</topic><topic>Microscopy, Atomic Force - methods</topic><topic>N-Acetylneuraminic Acid - chemistry</topic><topic>pH effects</topic><topic>Polyethylene glycol</topic><topic>Rafts</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Osawa, Shigehito</creatorcontrib><creatorcontrib>Matsumoto, Akira</creatorcontrib><creatorcontrib>Maejima, Yukie</creatorcontrib><creatorcontrib>Suzuki, Toshihiro</creatorcontrib><creatorcontrib>Miyahara, Yuji</creatorcontrib><creatorcontrib>Otsuka, Hidenori</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Osawa, Shigehito</au><au>Matsumoto, Akira</au><au>Maejima, Yukie</au><au>Suzuki, Toshihiro</au><au>Miyahara, Yuji</au><au>Otsuka, Hidenori</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct Observation of Cell Surface Sialylation by Atomic Force Microscopy Employing Boronic Acid–Sialic Acid Reversible Interaction</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2020-09-01</date><risdate>2020</risdate><volume>92</volume><issue>17</issue><spage>11714</spage><epage>11720</epage><pages>11714-11720</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>Tracing cell surface sialylation dynamics at a scale of the glycolipoprotein microdomain (lipid rafts) formations remains an intriguing challenge of cellular biology. Here, we demonstrate that this goal is accessible, taking advantage of a boronic acid (BA)-based reversible molecular recognition chemistry. A BA-end-functionalized poly­(ethylene glycol) was decorated onto an atomic force microscopy (AFM) cantilever, which provided a dynamic and sialic acid (SA)-specific imaging mode. Using this technique, we were able to heat map the SA expression levels not only on protein-decorated substrates but also directly on the cell surfaces, with a submicrometer scale resolution that may be relevant to that of the lipid rafts formation. The SA specificity and the binding reversibility of the probe were confirmed from its pH-dependent characteristics and an inhibition assay using free state SA. This finding may provide a noninvasive means for assessing a variety of SA-involved glycosylation dynamics spanning from physiology to pathology.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32867495</pmid><doi>10.1021/acs.analchem.0c01705</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7568-8677</orcidid><orcidid>https://orcid.org/0000-0003-2205-6497</orcidid><orcidid>https://orcid.org/0000-0003-2703-0958</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2020-09, Vol.92 (17), p.11714-11720
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_2439627458
source MEDLINE; ACS Publications
subjects Acids
Atomic force microscopy
Boronic Acids - chemistry
Cell Membrane
Cell surface
Chemistry
Glycosylation
Humans
Lipid rafts
Lipids
Microscopy
Microscopy, Atomic Force - methods
N-Acetylneuraminic Acid - chemistry
pH effects
Polyethylene glycol
Rafts
Substrates
title Direct Observation of Cell Surface Sialylation by Atomic Force Microscopy Employing Boronic Acid–Sialic Acid Reversible Interaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T19%3A48%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20Observation%20of%20Cell%20Surface%20Sialylation%20by%20Atomic%20Force%20Microscopy%20Employing%20Boronic%20Acid%E2%80%93Sialic%20Acid%20Reversible%20Interaction&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Osawa,%20Shigehito&rft.date=2020-09-01&rft.volume=92&rft.issue=17&rft.spage=11714&rft.epage=11720&rft.pages=11714-11720&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.0c01705&rft_dat=%3Cproquest_cross%3E2439627458%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2448685100&rft_id=info:pmid/32867495&rfr_iscdi=true