Computational Analysis of Phosphoproteomics Data in Multi‐Omics Cancer Studies
Multiple types of molecular data for the same set of clinical samples are increasingly available and may be analyzed jointly in an integrative analysis to maximize comprehensive biological insight. This analysis is important as separate analyses of individual omics data types usually do not fully ex...
Gespeichert in:
Veröffentlicht in: | Proteomics (Weinheim) 2021-02, Vol.21 (3-4), p.e1900312-n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 3-4 |
container_start_page | e1900312 |
container_title | Proteomics (Weinheim) |
container_volume | 21 |
creator | Mantini, Giulia Pham, Thang V. Piersma, Sander R. Jimenez, Connie R. |
description | Multiple types of molecular data for the same set of clinical samples are increasingly available and may be analyzed jointly in an integrative analysis to maximize comprehensive biological insight. This analysis is important as separate analyses of individual omics data types usually do not fully explain disease phenotypes. An increasing number of studies have now been focusing on multi‐omics data integration, yet not many studies have included phosphoproteomics data, an important layer for understanding signaling pathways. Multi‐omics integration methods with phosphoproteomics data are reviewed in the context of cancer research as well as multi‐omics methods papers that would be promising to apply to phosphoproteomics data. Analysis of individual data types is still the major approach even in large cohort proteogenomics studies. Hence, a section is dedicated on possible integrative methods for multi‐omics and phosphoproteomics data. In summary, this review provides the readers with both currently used integrative methods previously applied to phosphoproteomics and multi‐omics data integration and other algorithms for multi‐omics data integration promising for future application to phosphoproteomics data. |
doi_str_mv | 10.1002/pmic.201900312 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2439624539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2486391247</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4098-3dc47849fa28118fe9c66327b826f108a36614c2ee48bccea52656033ef92c393</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EoqWwMqJILCwp_opjj1X4qlTUSsBsua6jukriECdC3fgJ_EZ-Ce4HHVhY7k6n5967ewG4RHCIIMS3dWn1EEMkICQIH4E-YiiJBWfo-FAnpAfOvF9BiFIu0lPQI5inSYpIH8wyV9Zdq1rrKlVEoxDW3vrI5dFs6Xy9dHXjWuPCGh_dqVZFtoqeu6K1359f0203U5U2TfTSdgtr_Dk4yVXhzcU-D8Dbw_1r9hRPpo_jbDSJNYWCx2ShacqpyBXmCPHcCM0YwemcY5YjyBVhDFGNjaF8rrVRCWYJg4SYXGBNBBmAm51uuO-9M76VpfXaFIWqjOu8xJQIhmmyRa__oCvXNeHTDcUZEQjTNFDDHaUb531jclk3tlTNWiIoN17Ljdfy4HUYuNrLdvPSLA74r7kBSHbAhy3M-h85OXseZ2GIcPIDsS2KJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486391247</pqid></control><display><type>article</type><title>Computational Analysis of Phosphoproteomics Data in Multi‐Omics Cancer Studies</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Mantini, Giulia ; Pham, Thang V. ; Piersma, Sander R. ; Jimenez, Connie R.</creator><creatorcontrib>Mantini, Giulia ; Pham, Thang V. ; Piersma, Sander R. ; Jimenez, Connie R.</creatorcontrib><description>Multiple types of molecular data for the same set of clinical samples are increasingly available and may be analyzed jointly in an integrative analysis to maximize comprehensive biological insight. This analysis is important as separate analyses of individual omics data types usually do not fully explain disease phenotypes. An increasing number of studies have now been focusing on multi‐omics data integration, yet not many studies have included phosphoproteomics data, an important layer for understanding signaling pathways. Multi‐omics integration methods with phosphoproteomics data are reviewed in the context of cancer research as well as multi‐omics methods papers that would be promising to apply to phosphoproteomics data. Analysis of individual data types is still the major approach even in large cohort proteogenomics studies. Hence, a section is dedicated on possible integrative methods for multi‐omics and phosphoproteomics data. In summary, this review provides the readers with both currently used integrative methods previously applied to phosphoproteomics and multi‐omics data integration and other algorithms for multi‐omics data integration promising for future application to phosphoproteomics data.</description><identifier>ISSN: 1615-9853</identifier><identifier>EISSN: 1615-9861</identifier><identifier>DOI: 10.1002/pmic.201900312</identifier><identifier>PMID: 32875713</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; bioinformatics ; Cancer ; Computer applications ; Data analysis ; Data integration ; Integration ; multi‐omics ; Phenotypes ; phosphoproteomics</subject><ispartof>Proteomics (Weinheim), 2021-02, Vol.21 (3-4), p.e1900312-n/a</ispartof><rights>2020 The Authors. published by Wiley‐VCH GmbH</rights><rights>2020 The Authors. Proteomics published by Wiley-VCH GmbH.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4098-3dc47849fa28118fe9c66327b826f108a36614c2ee48bccea52656033ef92c393</citedby><cites>FETCH-LOGICAL-c4098-3dc47849fa28118fe9c66327b826f108a36614c2ee48bccea52656033ef92c393</cites><orcidid>0000-0002-3103-4508</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpmic.201900312$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpmic.201900312$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32875713$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mantini, Giulia</creatorcontrib><creatorcontrib>Pham, Thang V.</creatorcontrib><creatorcontrib>Piersma, Sander R.</creatorcontrib><creatorcontrib>Jimenez, Connie R.</creatorcontrib><title>Computational Analysis of Phosphoproteomics Data in Multi‐Omics Cancer Studies</title><title>Proteomics (Weinheim)</title><addtitle>Proteomics</addtitle><description>Multiple types of molecular data for the same set of clinical samples are increasingly available and may be analyzed jointly in an integrative analysis to maximize comprehensive biological insight. This analysis is important as separate analyses of individual omics data types usually do not fully explain disease phenotypes. An increasing number of studies have now been focusing on multi‐omics data integration, yet not many studies have included phosphoproteomics data, an important layer for understanding signaling pathways. Multi‐omics integration methods with phosphoproteomics data are reviewed in the context of cancer research as well as multi‐omics methods papers that would be promising to apply to phosphoproteomics data. Analysis of individual data types is still the major approach even in large cohort proteogenomics studies. Hence, a section is dedicated on possible integrative methods for multi‐omics and phosphoproteomics data. In summary, this review provides the readers with both currently used integrative methods previously applied to phosphoproteomics and multi‐omics data integration and other algorithms for multi‐omics data integration promising for future application to phosphoproteomics data.</description><subject>Algorithms</subject><subject>bioinformatics</subject><subject>Cancer</subject><subject>Computer applications</subject><subject>Data analysis</subject><subject>Data integration</subject><subject>Integration</subject><subject>multi‐omics</subject><subject>Phenotypes</subject><subject>phosphoproteomics</subject><issn>1615-9853</issn><issn>1615-9861</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkD1PwzAQhi0EoqWwMqJILCwp_opjj1X4qlTUSsBsua6jukriECdC3fgJ_EZ-Ce4HHVhY7k6n5967ewG4RHCIIMS3dWn1EEMkICQIH4E-YiiJBWfo-FAnpAfOvF9BiFIu0lPQI5inSYpIH8wyV9Zdq1rrKlVEoxDW3vrI5dFs6Xy9dHXjWuPCGh_dqVZFtoqeu6K1359f0203U5U2TfTSdgtr_Dk4yVXhzcU-D8Dbw_1r9hRPpo_jbDSJNYWCx2ShacqpyBXmCPHcCM0YwemcY5YjyBVhDFGNjaF8rrVRCWYJg4SYXGBNBBmAm51uuO-9M76VpfXaFIWqjOu8xJQIhmmyRa__oCvXNeHTDcUZEQjTNFDDHaUb531jclk3tlTNWiIoN17Ljdfy4HUYuNrLdvPSLA74r7kBSHbAhy3M-h85OXseZ2GIcPIDsS2KJw</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Mantini, Giulia</creator><creator>Pham, Thang V.</creator><creator>Piersma, Sander R.</creator><creator>Jimenez, Connie R.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3103-4508</orcidid></search><sort><creationdate>202102</creationdate><title>Computational Analysis of Phosphoproteomics Data in Multi‐Omics Cancer Studies</title><author>Mantini, Giulia ; Pham, Thang V. ; Piersma, Sander R. ; Jimenez, Connie R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4098-3dc47849fa28118fe9c66327b826f108a36614c2ee48bccea52656033ef92c393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>bioinformatics</topic><topic>Cancer</topic><topic>Computer applications</topic><topic>Data analysis</topic><topic>Data integration</topic><topic>Integration</topic><topic>multi‐omics</topic><topic>Phenotypes</topic><topic>phosphoproteomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mantini, Giulia</creatorcontrib><creatorcontrib>Pham, Thang V.</creatorcontrib><creatorcontrib>Piersma, Sander R.</creatorcontrib><creatorcontrib>Jimenez, Connie R.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Proteomics (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mantini, Giulia</au><au>Pham, Thang V.</au><au>Piersma, Sander R.</au><au>Jimenez, Connie R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational Analysis of Phosphoproteomics Data in Multi‐Omics Cancer Studies</atitle><jtitle>Proteomics (Weinheim)</jtitle><addtitle>Proteomics</addtitle><date>2021-02</date><risdate>2021</risdate><volume>21</volume><issue>3-4</issue><spage>e1900312</spage><epage>n/a</epage><pages>e1900312-n/a</pages><issn>1615-9853</issn><eissn>1615-9861</eissn><abstract>Multiple types of molecular data for the same set of clinical samples are increasingly available and may be analyzed jointly in an integrative analysis to maximize comprehensive biological insight. This analysis is important as separate analyses of individual omics data types usually do not fully explain disease phenotypes. An increasing number of studies have now been focusing on multi‐omics data integration, yet not many studies have included phosphoproteomics data, an important layer for understanding signaling pathways. Multi‐omics integration methods with phosphoproteomics data are reviewed in the context of cancer research as well as multi‐omics methods papers that would be promising to apply to phosphoproteomics data. Analysis of individual data types is still the major approach even in large cohort proteogenomics studies. Hence, a section is dedicated on possible integrative methods for multi‐omics and phosphoproteomics data. In summary, this review provides the readers with both currently used integrative methods previously applied to phosphoproteomics and multi‐omics data integration and other algorithms for multi‐omics data integration promising for future application to phosphoproteomics data.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32875713</pmid><doi>10.1002/pmic.201900312</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-3103-4508</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1615-9853 |
ispartof | Proteomics (Weinheim), 2021-02, Vol.21 (3-4), p.e1900312-n/a |
issn | 1615-9853 1615-9861 |
language | eng |
recordid | cdi_proquest_miscellaneous_2439624539 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Algorithms bioinformatics Cancer Computer applications Data analysis Data integration Integration multi‐omics Phenotypes phosphoproteomics |
title | Computational Analysis of Phosphoproteomics Data in Multi‐Omics Cancer Studies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T23%3A09%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20Analysis%20of%20Phosphoproteomics%20Data%20in%20Multi%E2%80%90Omics%20Cancer%20Studies&rft.jtitle=Proteomics%20(Weinheim)&rft.au=Mantini,%20Giulia&rft.date=2021-02&rft.volume=21&rft.issue=3-4&rft.spage=e1900312&rft.epage=n/a&rft.pages=e1900312-n/a&rft.issn=1615-9853&rft.eissn=1615-9861&rft_id=info:doi/10.1002/pmic.201900312&rft_dat=%3Cproquest_cross%3E2486391247%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2486391247&rft_id=info:pmid/32875713&rfr_iscdi=true |