Application of microfluidic devices for glioblastoma study: current status and future directions

Glioblastoma (GBM) is one of the most malignant primary brain tumors. This neoplasm is the hardest to treat and has a bad prognosis. Because of the characteristics of genetic heterogeneity and frequent recurrence, a successful cure for the disease is unlikely. Increasing evidence has revealed that t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedical microdevices 2020-09, Vol.22 (3), p.60, Article 60
Hauptverfasser: Cai, Xue, Briggs, Robert G., Homburg, Hannah B., Young, Isabella M., Davis, Ethan J., Lin, Yueh-Hsin, Battiste, James D., Sughrue, Michael E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 60
container_title Biomedical microdevices
container_volume 22
creator Cai, Xue
Briggs, Robert G.
Homburg, Hannah B.
Young, Isabella M.
Davis, Ethan J.
Lin, Yueh-Hsin
Battiste, James D.
Sughrue, Michael E.
description Glioblastoma (GBM) is one of the most malignant primary brain tumors. This neoplasm is the hardest to treat and has a bad prognosis. Because of the characteristics of genetic heterogeneity and frequent recurrence, a successful cure for the disease is unlikely. Increasing evidence has revealed that the GBM stem cell-like cells (GSCs) and microenvironment are key elements in GBM recurrence and treatment failure. To better understand the mechanisms underlying this disease and to develop more effective therapeutic strategies for treatment, suitable approaches, techniques, and model systems closely mimicking real GBM conditions are required. Microfluidic devices, a model system mimicking the in vivo brain microenvironment, provide a very useful tool to analyze GBM cell behavior, their correlation with tumor malignancy, and the efficacy of multiple drug treatment. This paper reviews the applications of microfluidic devices in GBM research and summarizes progress and perspectives in this field.
doi_str_mv 10.1007/s10544-020-00516-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2439621770</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2439621770</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-1fb939af96ae78b1558e9bcda2666a51f0784f316fa880b4148b221bbb2d5aee3</originalsourceid><addsrcrecordid>eNp9kMlOBCEQhonROG4v4MGQePHSStELtLeJcUtMvOgZgYYJk-5mhMbEt5dxXBIPnooKX_1V-RA6BnIOhLCLCKSuqoJQUhBSQ1PAFtqDmtGCMw7b-V1yVlBgzQztx7gkBNqmaXbRrKSckQrIHnqZr1a903JyfsTe4sHp4G2fXOc07syb0yZi6wNe9M6rXsbJDxLHKXXvl1inEMw45VZOKWI5dtimKQWDOxeMXmfGQ7RjZR_N0Vc9QM83109Xd8XD4-391fyh0CWrpwKsastW2raRhnEFdc1Nq3Qnab5Y1mAJ45UtobGSc6IqqLiiFJRStKulMeUBOtvkroJ_TSZOYnBRm76Xo_EpClqVbZNdMJLR0z_o0qcw5us-KYD1zkzRDZWFxBiMFavgBhneBRCx9i82_kX2Lz79C8hDJ1_RSQ2m-xn5Fp6BcgPE_DUuTPjd_U_sB0kskVo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2439112666</pqid></control><display><type>article</type><title>Application of microfluidic devices for glioblastoma study: current status and future directions</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Cai, Xue ; Briggs, Robert G. ; Homburg, Hannah B. ; Young, Isabella M. ; Davis, Ethan J. ; Lin, Yueh-Hsin ; Battiste, James D. ; Sughrue, Michael E.</creator><creatorcontrib>Cai, Xue ; Briggs, Robert G. ; Homburg, Hannah B. ; Young, Isabella M. ; Davis, Ethan J. ; Lin, Yueh-Hsin ; Battiste, James D. ; Sughrue, Michael E.</creatorcontrib><description>Glioblastoma (GBM) is one of the most malignant primary brain tumors. This neoplasm is the hardest to treat and has a bad prognosis. Because of the characteristics of genetic heterogeneity and frequent recurrence, a successful cure for the disease is unlikely. Increasing evidence has revealed that the GBM stem cell-like cells (GSCs) and microenvironment are key elements in GBM recurrence and treatment failure. To better understand the mechanisms underlying this disease and to develop more effective therapeutic strategies for treatment, suitable approaches, techniques, and model systems closely mimicking real GBM conditions are required. Microfluidic devices, a model system mimicking the in vivo brain microenvironment, provide a very useful tool to analyze GBM cell behavior, their correlation with tumor malignancy, and the efficacy of multiple drug treatment. This paper reviews the applications of microfluidic devices in GBM research and summarizes progress and perspectives in this field.</description><identifier>ISSN: 1387-2176</identifier><identifier>ISSN: 1572-8781</identifier><identifier>EISSN: 1572-8781</identifier><identifier>DOI: 10.1007/s10544-020-00516-1</identifier><identifier>PMID: 32870410</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Animals ; Biological and Medical Physics ; Biomedical Engineering and Bioengineering ; Biophysics ; Brain ; Brain cancer ; Brain Neoplasms - pathology ; Brain Neoplasms - therapy ; Brain tumors ; Correlation analysis ; Engineering ; Engineering Fluid Dynamics ; Glioblastoma ; Glioblastoma - metabolism ; Glioblastoma - pathology ; Heterogeneity ; Humans ; Lab-On-A-Chip Devices ; Malignancy ; Microfluidic devices ; Microfluidics ; Mimicry ; Nanotechnology ; Neoplastic Stem Cells - metabolism ; Neoplastic Stem Cells - pathology ; Stem cells ; System effectiveness ; Tumor Microenvironment ; Tumors</subject><ispartof>Biomedical microdevices, 2020-09, Vol.22 (3), p.60, Article 60</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-1fb939af96ae78b1558e9bcda2666a51f0784f316fa880b4148b221bbb2d5aee3</citedby><cites>FETCH-LOGICAL-c375t-1fb939af96ae78b1558e9bcda2666a51f0784f316fa880b4148b221bbb2d5aee3</cites><orcidid>0000-0001-5407-2585</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10544-020-00516-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10544-020-00516-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32870410$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cai, Xue</creatorcontrib><creatorcontrib>Briggs, Robert G.</creatorcontrib><creatorcontrib>Homburg, Hannah B.</creatorcontrib><creatorcontrib>Young, Isabella M.</creatorcontrib><creatorcontrib>Davis, Ethan J.</creatorcontrib><creatorcontrib>Lin, Yueh-Hsin</creatorcontrib><creatorcontrib>Battiste, James D.</creatorcontrib><creatorcontrib>Sughrue, Michael E.</creatorcontrib><title>Application of microfluidic devices for glioblastoma study: current status and future directions</title><title>Biomedical microdevices</title><addtitle>Biomed Microdevices</addtitle><addtitle>Biomed Microdevices</addtitle><description>Glioblastoma (GBM) is one of the most malignant primary brain tumors. This neoplasm is the hardest to treat and has a bad prognosis. Because of the characteristics of genetic heterogeneity and frequent recurrence, a successful cure for the disease is unlikely. Increasing evidence has revealed that the GBM stem cell-like cells (GSCs) and microenvironment are key elements in GBM recurrence and treatment failure. To better understand the mechanisms underlying this disease and to develop more effective therapeutic strategies for treatment, suitable approaches, techniques, and model systems closely mimicking real GBM conditions are required. Microfluidic devices, a model system mimicking the in vivo brain microenvironment, provide a very useful tool to analyze GBM cell behavior, their correlation with tumor malignancy, and the efficacy of multiple drug treatment. This paper reviews the applications of microfluidic devices in GBM research and summarizes progress and perspectives in this field.</description><subject>Animals</subject><subject>Biological and Medical Physics</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biophysics</subject><subject>Brain</subject><subject>Brain cancer</subject><subject>Brain Neoplasms - pathology</subject><subject>Brain Neoplasms - therapy</subject><subject>Brain tumors</subject><subject>Correlation analysis</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Glioblastoma</subject><subject>Glioblastoma - metabolism</subject><subject>Glioblastoma - pathology</subject><subject>Heterogeneity</subject><subject>Humans</subject><subject>Lab-On-A-Chip Devices</subject><subject>Malignancy</subject><subject>Microfluidic devices</subject><subject>Microfluidics</subject><subject>Mimicry</subject><subject>Nanotechnology</subject><subject>Neoplastic Stem Cells - metabolism</subject><subject>Neoplastic Stem Cells - pathology</subject><subject>Stem cells</subject><subject>System effectiveness</subject><subject>Tumor Microenvironment</subject><subject>Tumors</subject><issn>1387-2176</issn><issn>1572-8781</issn><issn>1572-8781</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kMlOBCEQhonROG4v4MGQePHSStELtLeJcUtMvOgZgYYJk-5mhMbEt5dxXBIPnooKX_1V-RA6BnIOhLCLCKSuqoJQUhBSQ1PAFtqDmtGCMw7b-V1yVlBgzQztx7gkBNqmaXbRrKSckQrIHnqZr1a903JyfsTe4sHp4G2fXOc07syb0yZi6wNe9M6rXsbJDxLHKXXvl1inEMw45VZOKWI5dtimKQWDOxeMXmfGQ7RjZR_N0Vc9QM83109Xd8XD4-391fyh0CWrpwKsastW2raRhnEFdc1Nq3Qnab5Y1mAJ45UtobGSc6IqqLiiFJRStKulMeUBOtvkroJ_TSZOYnBRm76Xo_EpClqVbZNdMJLR0z_o0qcw5us-KYD1zkzRDZWFxBiMFavgBhneBRCx9i82_kX2Lz79C8hDJ1_RSQ2m-xn5Fp6BcgPE_DUuTPjd_U_sB0kskVo</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Cai, Xue</creator><creator>Briggs, Robert G.</creator><creator>Homburg, Hannah B.</creator><creator>Young, Isabella M.</creator><creator>Davis, Ethan J.</creator><creator>Lin, Yueh-Hsin</creator><creator>Battiste, James D.</creator><creator>Sughrue, Michael E.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7SP</scope><scope>7TB</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5407-2585</orcidid></search><sort><creationdate>20200901</creationdate><title>Application of microfluidic devices for glioblastoma study: current status and future directions</title><author>Cai, Xue ; Briggs, Robert G. ; Homburg, Hannah B. ; Young, Isabella M. ; Davis, Ethan J. ; Lin, Yueh-Hsin ; Battiste, James D. ; Sughrue, Michael E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-1fb939af96ae78b1558e9bcda2666a51f0784f316fa880b4148b221bbb2d5aee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Biological and Medical Physics</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biophysics</topic><topic>Brain</topic><topic>Brain cancer</topic><topic>Brain Neoplasms - pathology</topic><topic>Brain Neoplasms - therapy</topic><topic>Brain tumors</topic><topic>Correlation analysis</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Glioblastoma</topic><topic>Glioblastoma - metabolism</topic><topic>Glioblastoma - pathology</topic><topic>Heterogeneity</topic><topic>Humans</topic><topic>Lab-On-A-Chip Devices</topic><topic>Malignancy</topic><topic>Microfluidic devices</topic><topic>Microfluidics</topic><topic>Mimicry</topic><topic>Nanotechnology</topic><topic>Neoplastic Stem Cells - metabolism</topic><topic>Neoplastic Stem Cells - pathology</topic><topic>Stem cells</topic><topic>System effectiveness</topic><topic>Tumor Microenvironment</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Xue</creatorcontrib><creatorcontrib>Briggs, Robert G.</creatorcontrib><creatorcontrib>Homburg, Hannah B.</creatorcontrib><creatorcontrib>Young, Isabella M.</creatorcontrib><creatorcontrib>Davis, Ethan J.</creatorcontrib><creatorcontrib>Lin, Yueh-Hsin</creatorcontrib><creatorcontrib>Battiste, James D.</creatorcontrib><creatorcontrib>Sughrue, Michael E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Biomedical microdevices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Xue</au><au>Briggs, Robert G.</au><au>Homburg, Hannah B.</au><au>Young, Isabella M.</au><au>Davis, Ethan J.</au><au>Lin, Yueh-Hsin</au><au>Battiste, James D.</au><au>Sughrue, Michael E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of microfluidic devices for glioblastoma study: current status and future directions</atitle><jtitle>Biomedical microdevices</jtitle><stitle>Biomed Microdevices</stitle><addtitle>Biomed Microdevices</addtitle><date>2020-09-01</date><risdate>2020</risdate><volume>22</volume><issue>3</issue><spage>60</spage><pages>60-</pages><artnum>60</artnum><issn>1387-2176</issn><issn>1572-8781</issn><eissn>1572-8781</eissn><abstract>Glioblastoma (GBM) is one of the most malignant primary brain tumors. This neoplasm is the hardest to treat and has a bad prognosis. Because of the characteristics of genetic heterogeneity and frequent recurrence, a successful cure for the disease is unlikely. Increasing evidence has revealed that the GBM stem cell-like cells (GSCs) and microenvironment are key elements in GBM recurrence and treatment failure. To better understand the mechanisms underlying this disease and to develop more effective therapeutic strategies for treatment, suitable approaches, techniques, and model systems closely mimicking real GBM conditions are required. Microfluidic devices, a model system mimicking the in vivo brain microenvironment, provide a very useful tool to analyze GBM cell behavior, their correlation with tumor malignancy, and the efficacy of multiple drug treatment. This paper reviews the applications of microfluidic devices in GBM research and summarizes progress and perspectives in this field.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>32870410</pmid><doi>10.1007/s10544-020-00516-1</doi><orcidid>https://orcid.org/0000-0001-5407-2585</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1387-2176
ispartof Biomedical microdevices, 2020-09, Vol.22 (3), p.60, Article 60
issn 1387-2176
1572-8781
1572-8781
language eng
recordid cdi_proquest_miscellaneous_2439621770
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Animals
Biological and Medical Physics
Biomedical Engineering and Bioengineering
Biophysics
Brain
Brain cancer
Brain Neoplasms - pathology
Brain Neoplasms - therapy
Brain tumors
Correlation analysis
Engineering
Engineering Fluid Dynamics
Glioblastoma
Glioblastoma - metabolism
Glioblastoma - pathology
Heterogeneity
Humans
Lab-On-A-Chip Devices
Malignancy
Microfluidic devices
Microfluidics
Mimicry
Nanotechnology
Neoplastic Stem Cells - metabolism
Neoplastic Stem Cells - pathology
Stem cells
System effectiveness
Tumor Microenvironment
Tumors
title Application of microfluidic devices for glioblastoma study: current status and future directions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A22%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20microfluidic%20devices%20for%20glioblastoma%20study:%20current%20status%20and%20future%20directions&rft.jtitle=Biomedical%20microdevices&rft.au=Cai,%20Xue&rft.date=2020-09-01&rft.volume=22&rft.issue=3&rft.spage=60&rft.pages=60-&rft.artnum=60&rft.issn=1387-2176&rft.eissn=1572-8781&rft_id=info:doi/10.1007/s10544-020-00516-1&rft_dat=%3Cproquest_cross%3E2439621770%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2439112666&rft_id=info:pmid/32870410&rfr_iscdi=true