Optimal configuration of a dual locking plate for femoral allograft or recycled autograft bone fixation: A finite element and biomechanical analysis

Allografts and recycled bone autograft are commonly used for biological reconstruction. The dual locking plates fixation method has been advocated for increasing allograft stability and preventing fixation failure; however, the biomechanical properties of the various configurations of dual locking p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical biomechanics (Bristol) 2020-12, Vol.80, p.105156-105156, Article 105156
Hauptverfasser: Wisanuyotin, Taweechok, Sirichativapee, Winai, Paholpak, Permsak, Kosuwon, Weerachai, Kasai, Yuichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 105156
container_issue
container_start_page 105156
container_title Clinical biomechanics (Bristol)
container_volume 80
creator Wisanuyotin, Taweechok
Sirichativapee, Winai
Paholpak, Permsak
Kosuwon, Weerachai
Kasai, Yuichi
description Allografts and recycled bone autograft are commonly used for biological reconstruction. The dual locking plates fixation method has been advocated for increasing allograft stability and preventing fixation failure; however, the biomechanical properties of the various configurations of dual locking plates have not been extensively studied. In a finite element (FE) analysis, we developed 6 patterns of different dual locking plate configurations for fixation of the mid shaft of the femur. The maximum strains were recorded for each of the 6 models then axial, bending and torsion stiffness were calculated. The FE analysis was validated the results with mechanical testing (axial compression, bending, and torsional stiffness) on a cadaveric femur. The highest axial compression (715.41 N/mm) and lateral bending (2981.24 N/mm) was found in Model 4 (with two 10-hole locking plates placed at the medial and lateral side), while the highest torsional stiffness (193.59 N·mm /mm) was found in Model 3 (with 8- and 10-hole locking plates placed at the posterior and lateral side). Excellent agreement was found between the finite element analysis and biomechanical testing (r2 = 0.98). The dual locking plate configuration with medial and lateral, 10-hole locking plates provided the most rigid and strongest fixation of the femur; both in terms of axial compression and lateral bending stiffness. •Dual locking plates fixation method improve allograft stability and prevent fixation failure•The highest axial compression was found in the medial and lateral 10-hole locking plates•The highest lateral bending stiffness was found in the medial and lateral 10-hole locking plates•Excellent agreement was found between the finite element analysis and biomechanical testing•The medial and lateral 10-hole locking plates provides the most rigid fixation of the femur
doi_str_mv 10.1016/j.clinbiomech.2020.105156
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2438990698</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0268003320302758</els_id><sourcerecordid>2438990698</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-2d726bdb75d5414c90cc1fe4d32187991ca6558fbb8a50bd9b3da4cb8dd061ba3</originalsourceid><addsrcrecordid>eNqNUU2PFCEUJEbjjqt_weDNS49AN_3hbTNZXZNN9qJnwsdjZKRhBNrs_A9_sLQzGo-eIPWq6uVVIfSGki0ltH932GrvgnJxBv11ywhbcU55_wRt6DhMDWUDfYo2hPVjQ0jbXqEXOR8IIR3jw3N01bKxZ2TgG_Tz4VjcLD3WMVi3X5IsLgYcLZbYLBX3UX9zYY-PXhbANiZsYY6pTqT3cZ-kLbiCCfRJezBYLuWCqhiqwD3-dnyPb-o_uOoBHmYIBctg8OUGGZxeHYP0p-zyS_TMSp_h1eW9Rl8-3H7e3TX3Dx8_7W7uG90OQ2mYGVivjBq44R3t9ES0phY607I1hYlq2XM-WqVGyYkyk2qN7LQajSE9VbK9Rm_PvscUvy-Qi5hd1uC9DBCXLFjXjtNE-mms1OlM1SnmnMCKY6q5pZOgRKyliIP4pxSxliLOpVTt68uaRc1g_ir_tFAJuzMB6rE_HCSRtYOgwbiaaxEmuv9Y8ws1Sqc7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438990698</pqid></control><display><type>article</type><title>Optimal configuration of a dual locking plate for femoral allograft or recycled autograft bone fixation: A finite element and biomechanical analysis</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Wisanuyotin, Taweechok ; Sirichativapee, Winai ; Paholpak, Permsak ; Kosuwon, Weerachai ; Kasai, Yuichi</creator><creatorcontrib>Wisanuyotin, Taweechok ; Sirichativapee, Winai ; Paholpak, Permsak ; Kosuwon, Weerachai ; Kasai, Yuichi</creatorcontrib><description>Allografts and recycled bone autograft are commonly used for biological reconstruction. The dual locking plates fixation method has been advocated for increasing allograft stability and preventing fixation failure; however, the biomechanical properties of the various configurations of dual locking plates have not been extensively studied. In a finite element (FE) analysis, we developed 6 patterns of different dual locking plate configurations for fixation of the mid shaft of the femur. The maximum strains were recorded for each of the 6 models then axial, bending and torsion stiffness were calculated. The FE analysis was validated the results with mechanical testing (axial compression, bending, and torsional stiffness) on a cadaveric femur. The highest axial compression (715.41 N/mm) and lateral bending (2981.24 N/mm) was found in Model 4 (with two 10-hole locking plates placed at the medial and lateral side), while the highest torsional stiffness (193.59 N·mm /mm) was found in Model 3 (with 8- and 10-hole locking plates placed at the posterior and lateral side). Excellent agreement was found between the finite element analysis and biomechanical testing (r2 = 0.98). The dual locking plate configuration with medial and lateral, 10-hole locking plates provided the most rigid and strongest fixation of the femur; both in terms of axial compression and lateral bending stiffness. •Dual locking plates fixation method improve allograft stability and prevent fixation failure•The highest axial compression was found in the medial and lateral 10-hole locking plates•The highest lateral bending stiffness was found in the medial and lateral 10-hole locking plates•Excellent agreement was found between the finite element analysis and biomechanical testing•The medial and lateral 10-hole locking plates provides the most rigid fixation of the femur</description><identifier>ISSN: 0268-0033</identifier><identifier>EISSN: 1879-1271</identifier><identifier>DOI: 10.1016/j.clinbiomech.2020.105156</identifier><identifier>PMID: 32862075</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Allograft ; Autografts ; Biomechanical analysis ; Biomechanical Phenomena ; Bone Plates ; Bone Transplantation ; Dual locking plating ; Femur ; Femur - injuries ; Femur - surgery ; Finite Element Analysis ; Fracture Fixation, Internal - instrumentation ; Humans ; Recycled bone autograft</subject><ispartof>Clinical biomechanics (Bristol), 2020-12, Vol.80, p.105156-105156, Article 105156</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright © 2020 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-2d726bdb75d5414c90cc1fe4d32187991ca6558fbb8a50bd9b3da4cb8dd061ba3</citedby><cites>FETCH-LOGICAL-c377t-2d726bdb75d5414c90cc1fe4d32187991ca6558fbb8a50bd9b3da4cb8dd061ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.clinbiomech.2020.105156$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32862075$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wisanuyotin, Taweechok</creatorcontrib><creatorcontrib>Sirichativapee, Winai</creatorcontrib><creatorcontrib>Paholpak, Permsak</creatorcontrib><creatorcontrib>Kosuwon, Weerachai</creatorcontrib><creatorcontrib>Kasai, Yuichi</creatorcontrib><title>Optimal configuration of a dual locking plate for femoral allograft or recycled autograft bone fixation: A finite element and biomechanical analysis</title><title>Clinical biomechanics (Bristol)</title><addtitle>Clin Biomech (Bristol, Avon)</addtitle><description>Allografts and recycled bone autograft are commonly used for biological reconstruction. The dual locking plates fixation method has been advocated for increasing allograft stability and preventing fixation failure; however, the biomechanical properties of the various configurations of dual locking plates have not been extensively studied. In a finite element (FE) analysis, we developed 6 patterns of different dual locking plate configurations for fixation of the mid shaft of the femur. The maximum strains were recorded for each of the 6 models then axial, bending and torsion stiffness were calculated. The FE analysis was validated the results with mechanical testing (axial compression, bending, and torsional stiffness) on a cadaveric femur. The highest axial compression (715.41 N/mm) and lateral bending (2981.24 N/mm) was found in Model 4 (with two 10-hole locking plates placed at the medial and lateral side), while the highest torsional stiffness (193.59 N·mm /mm) was found in Model 3 (with 8- and 10-hole locking plates placed at the posterior and lateral side). Excellent agreement was found between the finite element analysis and biomechanical testing (r2 = 0.98). The dual locking plate configuration with medial and lateral, 10-hole locking plates provided the most rigid and strongest fixation of the femur; both in terms of axial compression and lateral bending stiffness. •Dual locking plates fixation method improve allograft stability and prevent fixation failure•The highest axial compression was found in the medial and lateral 10-hole locking plates•The highest lateral bending stiffness was found in the medial and lateral 10-hole locking plates•Excellent agreement was found between the finite element analysis and biomechanical testing•The medial and lateral 10-hole locking plates provides the most rigid fixation of the femur</description><subject>Allograft</subject><subject>Autografts</subject><subject>Biomechanical analysis</subject><subject>Biomechanical Phenomena</subject><subject>Bone Plates</subject><subject>Bone Transplantation</subject><subject>Dual locking plating</subject><subject>Femur</subject><subject>Femur - injuries</subject><subject>Femur - surgery</subject><subject>Finite Element Analysis</subject><subject>Fracture Fixation, Internal - instrumentation</subject><subject>Humans</subject><subject>Recycled bone autograft</subject><issn>0268-0033</issn><issn>1879-1271</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUU2PFCEUJEbjjqt_weDNS49AN_3hbTNZXZNN9qJnwsdjZKRhBNrs_A9_sLQzGo-eIPWq6uVVIfSGki0ltH932GrvgnJxBv11ywhbcU55_wRt6DhMDWUDfYo2hPVjQ0jbXqEXOR8IIR3jw3N01bKxZ2TgG_Tz4VjcLD3WMVi3X5IsLgYcLZbYLBX3UX9zYY-PXhbANiZsYY6pTqT3cZ-kLbiCCfRJezBYLuWCqhiqwD3-dnyPb-o_uOoBHmYIBctg8OUGGZxeHYP0p-zyS_TMSp_h1eW9Rl8-3H7e3TX3Dx8_7W7uG90OQ2mYGVivjBq44R3t9ES0phY607I1hYlq2XM-WqVGyYkyk2qN7LQajSE9VbK9Rm_PvscUvy-Qi5hd1uC9DBCXLFjXjtNE-mms1OlM1SnmnMCKY6q5pZOgRKyliIP4pxSxliLOpVTt68uaRc1g_ir_tFAJuzMB6rE_HCSRtYOgwbiaaxEmuv9Y8ws1Sqc7</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Wisanuyotin, Taweechok</creator><creator>Sirichativapee, Winai</creator><creator>Paholpak, Permsak</creator><creator>Kosuwon, Weerachai</creator><creator>Kasai, Yuichi</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202012</creationdate><title>Optimal configuration of a dual locking plate for femoral allograft or recycled autograft bone fixation: A finite element and biomechanical analysis</title><author>Wisanuyotin, Taweechok ; Sirichativapee, Winai ; Paholpak, Permsak ; Kosuwon, Weerachai ; Kasai, Yuichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-2d726bdb75d5414c90cc1fe4d32187991ca6558fbb8a50bd9b3da4cb8dd061ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Allograft</topic><topic>Autografts</topic><topic>Biomechanical analysis</topic><topic>Biomechanical Phenomena</topic><topic>Bone Plates</topic><topic>Bone Transplantation</topic><topic>Dual locking plating</topic><topic>Femur</topic><topic>Femur - injuries</topic><topic>Femur - surgery</topic><topic>Finite Element Analysis</topic><topic>Fracture Fixation, Internal - instrumentation</topic><topic>Humans</topic><topic>Recycled bone autograft</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wisanuyotin, Taweechok</creatorcontrib><creatorcontrib>Sirichativapee, Winai</creatorcontrib><creatorcontrib>Paholpak, Permsak</creatorcontrib><creatorcontrib>Kosuwon, Weerachai</creatorcontrib><creatorcontrib>Kasai, Yuichi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Clinical biomechanics (Bristol)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wisanuyotin, Taweechok</au><au>Sirichativapee, Winai</au><au>Paholpak, Permsak</au><au>Kosuwon, Weerachai</au><au>Kasai, Yuichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal configuration of a dual locking plate for femoral allograft or recycled autograft bone fixation: A finite element and biomechanical analysis</atitle><jtitle>Clinical biomechanics (Bristol)</jtitle><addtitle>Clin Biomech (Bristol, Avon)</addtitle><date>2020-12</date><risdate>2020</risdate><volume>80</volume><spage>105156</spage><epage>105156</epage><pages>105156-105156</pages><artnum>105156</artnum><issn>0268-0033</issn><eissn>1879-1271</eissn><abstract>Allografts and recycled bone autograft are commonly used for biological reconstruction. The dual locking plates fixation method has been advocated for increasing allograft stability and preventing fixation failure; however, the biomechanical properties of the various configurations of dual locking plates have not been extensively studied. In a finite element (FE) analysis, we developed 6 patterns of different dual locking plate configurations for fixation of the mid shaft of the femur. The maximum strains were recorded for each of the 6 models then axial, bending and torsion stiffness were calculated. The FE analysis was validated the results with mechanical testing (axial compression, bending, and torsional stiffness) on a cadaveric femur. The highest axial compression (715.41 N/mm) and lateral bending (2981.24 N/mm) was found in Model 4 (with two 10-hole locking plates placed at the medial and lateral side), while the highest torsional stiffness (193.59 N·mm /mm) was found in Model 3 (with 8- and 10-hole locking plates placed at the posterior and lateral side). Excellent agreement was found between the finite element analysis and biomechanical testing (r2 = 0.98). The dual locking plate configuration with medial and lateral, 10-hole locking plates provided the most rigid and strongest fixation of the femur; both in terms of axial compression and lateral bending stiffness. •Dual locking plates fixation method improve allograft stability and prevent fixation failure•The highest axial compression was found in the medial and lateral 10-hole locking plates•The highest lateral bending stiffness was found in the medial and lateral 10-hole locking plates•Excellent agreement was found between the finite element analysis and biomechanical testing•The medial and lateral 10-hole locking plates provides the most rigid fixation of the femur</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>32862075</pmid><doi>10.1016/j.clinbiomech.2020.105156</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0268-0033
ispartof Clinical biomechanics (Bristol), 2020-12, Vol.80, p.105156-105156, Article 105156
issn 0268-0033
1879-1271
language eng
recordid cdi_proquest_miscellaneous_2438990698
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Allograft
Autografts
Biomechanical analysis
Biomechanical Phenomena
Bone Plates
Bone Transplantation
Dual locking plating
Femur
Femur - injuries
Femur - surgery
Finite Element Analysis
Fracture Fixation, Internal - instrumentation
Humans
Recycled bone autograft
title Optimal configuration of a dual locking plate for femoral allograft or recycled autograft bone fixation: A finite element and biomechanical analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A12%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20configuration%20of%20a%20dual%20locking%20plate%20for%20femoral%20allograft%20or%20recycled%20autograft%20bone%20fixation:%20A%20finite%20element%20and%20biomechanical%20analysis&rft.jtitle=Clinical%20biomechanics%20(Bristol)&rft.au=Wisanuyotin,%20Taweechok&rft.date=2020-12&rft.volume=80&rft.spage=105156&rft.epage=105156&rft.pages=105156-105156&rft.artnum=105156&rft.issn=0268-0033&rft.eissn=1879-1271&rft_id=info:doi/10.1016/j.clinbiomech.2020.105156&rft_dat=%3Cproquest_cross%3E2438990698%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2438990698&rft_id=info:pmid/32862075&rft_els_id=S0268003320302758&rfr_iscdi=true