Characterization of the logistic and loglogistic distributions by extreme value related stability with random sample size
Maximum stability of a distribution with respect to a positive integer random variable N is defined by the property that the type of distribution is not changed when considering the maximum value of N independent observations. The logistic distribution is proved to be the only symmetric distribution...
Gespeichert in:
Veröffentlicht in: | Journal of applied probability 1987-12, Vol.24 (4), p.838-851 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Maximum stability of a distribution with respect to a positive integer random variable N is defined by the property that the type of distribution is not changed when considering the maximum value of N independent observations. The logistic distribution is proved to be the only symmetric distribution which is maximum stable with respect to each member of a sequence of positive integer random variables assuming value 1 with probability tending to 1. If a distribution is maximum stable with respect to such a sequence and minimum stable with respect to another, then it must be logistic, loglogistic or ‘backward' loglogistic. The only possible sample size distributions in these cases are geometric. |
---|---|
ISSN: | 0021-9002 1475-6072 |
DOI: | 10.2307/3214209 |