Is waist-to-height ratio a better predictor of hypertension and type 2 diabetes than body mass index and waist circumference in the Chilean population?
•Waist-to-height ratio may be a better predictor of cardiometabolic risk.•In Chile, it is unclear whether waist-to-height ratio is a better predictor of hypertension and diabetes than body mass index and waist circumference.•A bootstrapping approach was performed to determine which of these three an...
Gespeichert in:
Veröffentlicht in: | Nutrition (Burbank, Los Angeles County, Calif.) Los Angeles County, Calif.), 2020-11, Vol.79-80, p.110932-110932, Article 110932 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 110932 |
---|---|
container_issue | |
container_start_page | 110932 |
container_title | Nutrition (Burbank, Los Angeles County, Calif.) |
container_volume | 79-80 |
creator | Petermann-Rocha, Fanny Ulloa, Natalia Martínez-Sanguinetti, María Adela Leiva, Ana María Martorell, Miquel Villagrán, Marcelo Troncoso-Pantoja, Claudia Ho, Frederick K. Celis-Morales, Carlos Pizarro, Alonso |
description | •Waist-to-height ratio may be a better predictor of cardiometabolic risk.•In Chile, it is unclear whether waist-to-height ratio is a better predictor of hypertension and diabetes than body mass index and waist circumference.•A bootstrapping approach was performed to determine which of these three anthropometric predicts the highest receiver operating characteristic and area under the curve.•Waist-to-height ratio was a better predictor of hypertension and diabetes than body mass index and waist circumference in Chile.
The aim of this study was to identify which anthropometric measurement (body mass index [BMI], waist circumference [WC], or waist-to-height ratio [WHtR]) is a better predictor of type 2 diabetes and hypertension in the Chilean population.
The study included 13 044 participants (59.7% women) from the Chilean National Health Surveys conducted in 2003, 2009–2010, and 2016–2017. BMI, WC, and WHtR were the anthropometric measurements evaluated. Hypertension was defined as systolic blood pressure ≥140 mm Hg and diastolic blood pressure ≥90 mm Hg or on medication for hypertension. Diabetes was defined as fasting glucose ≥7 mmol/L or on medication for diabetes. The receiver operating characteristics (ROC) curve and the area under curve (AUC) were computed to derive the specificity and sensitivity using a bootstrapping approach.
Compared with BMI and WC, WHtR was the anthropometric measurement with the highest AUC curve in both sexes for hypertension (AUC for women: 0.70; 95% confidence interval [CI], 0.67–0.73; AUC for men: 0.71; 95% CI, 0.69–0.74) and diabetes (AUC for women: 0.71; 95% CI, 0.66–0.77; AUC for men: 0.71; 95% CI, 0.67–0.76). The sex-specific cutoff points of WHtR to predict hypertension were 0.59 and 0.55 for women and men, respectively. Those used to predict diabetes were 0.60 and 0.58 for women and men, respectively.
WHtR was a better predictor of hypertension and diabetes than BMI and WC in Chile. The definition of cutoff points specific for the Chilean population could be implemented in future screening programs aiming to identify high-risk individuals. |
doi_str_mv | 10.1016/j.nut.2020.110932 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2437841226</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S089990072030215X</els_id><sourcerecordid>2437841226</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-f2050f73cd8ecd0c19945062fd4d7271d3d378ca6477152c58d2391aa73642a23</originalsourceid><addsrcrecordid>eNp9kbtuHCEUhlGUSNk4fgB3SGnSzJrbDINcRNHKN8mSm7hGGM5kWM3CGJgk-yR-XbPeVC5cIeD7OJzzI3RGyZoS2p1v12Epa0ZY3VOiOPuAVrSXvKFMiI9oRXqlGkWI_Iy-5LwlhFDVqRV6vs34r_G5NCU2I_jfY8HJFB-xwY9QCiQ8J3DelphwHPC4nyEVCNnHgE1wuNQDzLDzpuKQcRlNwI_R7fHO5Ix9cPDvFXytgq1PdtkNkCBYqLeVB7wZ_QRVm-O8TIfi4cdX9GkwU4bT_-sJeri6_LW5ae7ur283P-8aKwgtzcBISwbJrevBOmKpUqIlHRuccJJJ6rjjsremE1LSltm2d4wraozknWCG8RP0_fjunOLTArnonc8WpskEiEvWTFRfUMa6in57g27jkkL9XaVa2fZcsbZS9EjZFHNOMOg5-Z1Je02JPkSlt7pGpQ9R6WNU1bk4OlA7_eMh6Wz9YUDOJ7BFu-jfsV8AzXyc2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2457583925</pqid></control><display><type>article</type><title>Is waist-to-height ratio a better predictor of hypertension and type 2 diabetes than body mass index and waist circumference in the Chilean population?</title><source>Access via ScienceDirect (Elsevier)</source><source>ProQuest Central</source><creator>Petermann-Rocha, Fanny ; Ulloa, Natalia ; Martínez-Sanguinetti, María Adela ; Leiva, Ana María ; Martorell, Miquel ; Villagrán, Marcelo ; Troncoso-Pantoja, Claudia ; Ho, Frederick K. ; Celis-Morales, Carlos ; Pizarro, Alonso</creator><creatorcontrib>Petermann-Rocha, Fanny ; Ulloa, Natalia ; Martínez-Sanguinetti, María Adela ; Leiva, Ana María ; Martorell, Miquel ; Villagrán, Marcelo ; Troncoso-Pantoja, Claudia ; Ho, Frederick K. ; Celis-Morales, Carlos ; Pizarro, Alonso ; ELHOC-Chile Research Consortium</creatorcontrib><description>•Waist-to-height ratio may be a better predictor of cardiometabolic risk.•In Chile, it is unclear whether waist-to-height ratio is a better predictor of hypertension and diabetes than body mass index and waist circumference.•A bootstrapping approach was performed to determine which of these three anthropometric predicts the highest receiver operating characteristic and area under the curve.•Waist-to-height ratio was a better predictor of hypertension and diabetes than body mass index and waist circumference in Chile.
The aim of this study was to identify which anthropometric measurement (body mass index [BMI], waist circumference [WC], or waist-to-height ratio [WHtR]) is a better predictor of type 2 diabetes and hypertension in the Chilean population.
The study included 13 044 participants (59.7% women) from the Chilean National Health Surveys conducted in 2003, 2009–2010, and 2016–2017. BMI, WC, and WHtR were the anthropometric measurements evaluated. Hypertension was defined as systolic blood pressure ≥140 mm Hg and diastolic blood pressure ≥90 mm Hg or on medication for hypertension. Diabetes was defined as fasting glucose ≥7 mmol/L or on medication for diabetes. The receiver operating characteristics (ROC) curve and the area under curve (AUC) were computed to derive the specificity and sensitivity using a bootstrapping approach.
Compared with BMI and WC, WHtR was the anthropometric measurement with the highest AUC curve in both sexes for hypertension (AUC for women: 0.70; 95% confidence interval [CI], 0.67–0.73; AUC for men: 0.71; 95% CI, 0.69–0.74) and diabetes (AUC for women: 0.71; 95% CI, 0.66–0.77; AUC for men: 0.71; 95% CI, 0.67–0.76). The sex-specific cutoff points of WHtR to predict hypertension were 0.59 and 0.55 for women and men, respectively. Those used to predict diabetes were 0.60 and 0.58 for women and men, respectively.
WHtR was a better predictor of hypertension and diabetes than BMI and WC in Chile. The definition of cutoff points specific for the Chilean population could be implemented in future screening programs aiming to identify high-risk individuals.</description><identifier>ISSN: 0899-9007</identifier><identifier>EISSN: 1873-1244</identifier><identifier>DOI: 10.1016/j.nut.2020.110932</identifier><language>eng</language><publisher>Kidlington: Elsevier Inc</publisher><subject>Anthropometry ; Blood pressure ; Body mass index ; Body size ; Cardiovascular diseases ; Chronic disease ; Chronic illnesses ; Confidence intervals ; Datasets ; Diabetes ; Diabetes mellitus (non-insulin dependent) ; Disease ; Hypertension ; Men ; Morbidity ; Obesity ; Population studies ; Risk factors ; Women ; Womens health</subject><ispartof>Nutrition (Burbank, Los Angeles County, Calif.), 2020-11, Vol.79-80, p.110932-110932, Article 110932</ispartof><rights>2020 Elsevier Inc.</rights><rights>2020. Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-f2050f73cd8ecd0c19945062fd4d7271d3d378ca6477152c58d2391aa73642a23</citedby><cites>FETCH-LOGICAL-c401t-f2050f73cd8ecd0c19945062fd4d7271d3d378ca6477152c58d2391aa73642a23</cites><orcidid>0000-0002-4384-4962</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2457583925?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995,64385,64387,64389,72469</link.rule.ids></links><search><creatorcontrib>Petermann-Rocha, Fanny</creatorcontrib><creatorcontrib>Ulloa, Natalia</creatorcontrib><creatorcontrib>Martínez-Sanguinetti, María Adela</creatorcontrib><creatorcontrib>Leiva, Ana María</creatorcontrib><creatorcontrib>Martorell, Miquel</creatorcontrib><creatorcontrib>Villagrán, Marcelo</creatorcontrib><creatorcontrib>Troncoso-Pantoja, Claudia</creatorcontrib><creatorcontrib>Ho, Frederick K.</creatorcontrib><creatorcontrib>Celis-Morales, Carlos</creatorcontrib><creatorcontrib>Pizarro, Alonso</creatorcontrib><creatorcontrib>ELHOC-Chile Research Consortium</creatorcontrib><title>Is waist-to-height ratio a better predictor of hypertension and type 2 diabetes than body mass index and waist circumference in the Chilean population?</title><title>Nutrition (Burbank, Los Angeles County, Calif.)</title><description>•Waist-to-height ratio may be a better predictor of cardiometabolic risk.•In Chile, it is unclear whether waist-to-height ratio is a better predictor of hypertension and diabetes than body mass index and waist circumference.•A bootstrapping approach was performed to determine which of these three anthropometric predicts the highest receiver operating characteristic and area under the curve.•Waist-to-height ratio was a better predictor of hypertension and diabetes than body mass index and waist circumference in Chile.
The aim of this study was to identify which anthropometric measurement (body mass index [BMI], waist circumference [WC], or waist-to-height ratio [WHtR]) is a better predictor of type 2 diabetes and hypertension in the Chilean population.
The study included 13 044 participants (59.7% women) from the Chilean National Health Surveys conducted in 2003, 2009–2010, and 2016–2017. BMI, WC, and WHtR were the anthropometric measurements evaluated. Hypertension was defined as systolic blood pressure ≥140 mm Hg and diastolic blood pressure ≥90 mm Hg or on medication for hypertension. Diabetes was defined as fasting glucose ≥7 mmol/L or on medication for diabetes. The receiver operating characteristics (ROC) curve and the area under curve (AUC) were computed to derive the specificity and sensitivity using a bootstrapping approach.
Compared with BMI and WC, WHtR was the anthropometric measurement with the highest AUC curve in both sexes for hypertension (AUC for women: 0.70; 95% confidence interval [CI], 0.67–0.73; AUC for men: 0.71; 95% CI, 0.69–0.74) and diabetes (AUC for women: 0.71; 95% CI, 0.66–0.77; AUC for men: 0.71; 95% CI, 0.67–0.76). The sex-specific cutoff points of WHtR to predict hypertension were 0.59 and 0.55 for women and men, respectively. Those used to predict diabetes were 0.60 and 0.58 for women and men, respectively.
WHtR was a better predictor of hypertension and diabetes than BMI and WC in Chile. The definition of cutoff points specific for the Chilean population could be implemented in future screening programs aiming to identify high-risk individuals.</description><subject>Anthropometry</subject><subject>Blood pressure</subject><subject>Body mass index</subject><subject>Body size</subject><subject>Cardiovascular diseases</subject><subject>Chronic disease</subject><subject>Chronic illnesses</subject><subject>Confidence intervals</subject><subject>Datasets</subject><subject>Diabetes</subject><subject>Diabetes mellitus (non-insulin dependent)</subject><subject>Disease</subject><subject>Hypertension</subject><subject>Men</subject><subject>Morbidity</subject><subject>Obesity</subject><subject>Population studies</subject><subject>Risk factors</subject><subject>Women</subject><subject>Womens health</subject><issn>0899-9007</issn><issn>1873-1244</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kbtuHCEUhlGUSNk4fgB3SGnSzJrbDINcRNHKN8mSm7hGGM5kWM3CGJgk-yR-XbPeVC5cIeD7OJzzI3RGyZoS2p1v12Epa0ZY3VOiOPuAVrSXvKFMiI9oRXqlGkWI_Iy-5LwlhFDVqRV6vs34r_G5NCU2I_jfY8HJFB-xwY9QCiQ8J3DelphwHPC4nyEVCNnHgE1wuNQDzLDzpuKQcRlNwI_R7fHO5Ix9cPDvFXytgq1PdtkNkCBYqLeVB7wZ_QRVm-O8TIfi4cdX9GkwU4bT_-sJeri6_LW5ae7ur283P-8aKwgtzcBISwbJrevBOmKpUqIlHRuccJJJ6rjjsremE1LSltm2d4wraozknWCG8RP0_fjunOLTArnonc8WpskEiEvWTFRfUMa6in57g27jkkL9XaVa2fZcsbZS9EjZFHNOMOg5-Z1Je02JPkSlt7pGpQ9R6WNU1bk4OlA7_eMh6Wz9YUDOJ7BFu-jfsV8AzXyc2w</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Petermann-Rocha, Fanny</creator><creator>Ulloa, Natalia</creator><creator>Martínez-Sanguinetti, María Adela</creator><creator>Leiva, Ana María</creator><creator>Martorell, Miquel</creator><creator>Villagrán, Marcelo</creator><creator>Troncoso-Pantoja, Claudia</creator><creator>Ho, Frederick K.</creator><creator>Celis-Morales, Carlos</creator><creator>Pizarro, Alonso</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7RV</scope><scope>7TS</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88C</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AN0</scope><scope>ASE</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FPQ</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K6X</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4384-4962</orcidid></search><sort><creationdate>202011</creationdate><title>Is waist-to-height ratio a better predictor of hypertension and type 2 diabetes than body mass index and waist circumference in the Chilean population?</title><author>Petermann-Rocha, Fanny ; Ulloa, Natalia ; Martínez-Sanguinetti, María Adela ; Leiva, Ana María ; Martorell, Miquel ; Villagrán, Marcelo ; Troncoso-Pantoja, Claudia ; Ho, Frederick K. ; Celis-Morales, Carlos ; Pizarro, Alonso</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-f2050f73cd8ecd0c19945062fd4d7271d3d378ca6477152c58d2391aa73642a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anthropometry</topic><topic>Blood pressure</topic><topic>Body mass index</topic><topic>Body size</topic><topic>Cardiovascular diseases</topic><topic>Chronic disease</topic><topic>Chronic illnesses</topic><topic>Confidence intervals</topic><topic>Datasets</topic><topic>Diabetes</topic><topic>Diabetes mellitus (non-insulin dependent)</topic><topic>Disease</topic><topic>Hypertension</topic><topic>Men</topic><topic>Morbidity</topic><topic>Obesity</topic><topic>Population studies</topic><topic>Risk factors</topic><topic>Women</topic><topic>Womens health</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petermann-Rocha, Fanny</creatorcontrib><creatorcontrib>Ulloa, Natalia</creatorcontrib><creatorcontrib>Martínez-Sanguinetti, María Adela</creatorcontrib><creatorcontrib>Leiva, Ana María</creatorcontrib><creatorcontrib>Martorell, Miquel</creatorcontrib><creatorcontrib>Villagrán, Marcelo</creatorcontrib><creatorcontrib>Troncoso-Pantoja, Claudia</creatorcontrib><creatorcontrib>Ho, Frederick K.</creatorcontrib><creatorcontrib>Celis-Morales, Carlos</creatorcontrib><creatorcontrib>Pizarro, Alonso</creatorcontrib><creatorcontrib>ELHOC-Chile Research Consortium</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>Nursing & Allied Health Database</collection><collection>Physical Education Index</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>British Nursing Database</collection><collection>British Nursing Index</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>British Nursing Index (BNI) (1985 to Present)</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>British Nursing Index</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Nutrition (Burbank, Los Angeles County, Calif.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petermann-Rocha, Fanny</au><au>Ulloa, Natalia</au><au>Martínez-Sanguinetti, María Adela</au><au>Leiva, Ana María</au><au>Martorell, Miquel</au><au>Villagrán, Marcelo</au><au>Troncoso-Pantoja, Claudia</au><au>Ho, Frederick K.</au><au>Celis-Morales, Carlos</au><au>Pizarro, Alonso</au><aucorp>ELHOC-Chile Research Consortium</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Is waist-to-height ratio a better predictor of hypertension and type 2 diabetes than body mass index and waist circumference in the Chilean population?</atitle><jtitle>Nutrition (Burbank, Los Angeles County, Calif.)</jtitle><date>2020-11</date><risdate>2020</risdate><volume>79-80</volume><spage>110932</spage><epage>110932</epage><pages>110932-110932</pages><artnum>110932</artnum><issn>0899-9007</issn><eissn>1873-1244</eissn><abstract>•Waist-to-height ratio may be a better predictor of cardiometabolic risk.•In Chile, it is unclear whether waist-to-height ratio is a better predictor of hypertension and diabetes than body mass index and waist circumference.•A bootstrapping approach was performed to determine which of these three anthropometric predicts the highest receiver operating characteristic and area under the curve.•Waist-to-height ratio was a better predictor of hypertension and diabetes than body mass index and waist circumference in Chile.
The aim of this study was to identify which anthropometric measurement (body mass index [BMI], waist circumference [WC], or waist-to-height ratio [WHtR]) is a better predictor of type 2 diabetes and hypertension in the Chilean population.
The study included 13 044 participants (59.7% women) from the Chilean National Health Surveys conducted in 2003, 2009–2010, and 2016–2017. BMI, WC, and WHtR were the anthropometric measurements evaluated. Hypertension was defined as systolic blood pressure ≥140 mm Hg and diastolic blood pressure ≥90 mm Hg or on medication for hypertension. Diabetes was defined as fasting glucose ≥7 mmol/L or on medication for diabetes. The receiver operating characteristics (ROC) curve and the area under curve (AUC) were computed to derive the specificity and sensitivity using a bootstrapping approach.
Compared with BMI and WC, WHtR was the anthropometric measurement with the highest AUC curve in both sexes for hypertension (AUC for women: 0.70; 95% confidence interval [CI], 0.67–0.73; AUC for men: 0.71; 95% CI, 0.69–0.74) and diabetes (AUC for women: 0.71; 95% CI, 0.66–0.77; AUC for men: 0.71; 95% CI, 0.67–0.76). The sex-specific cutoff points of WHtR to predict hypertension were 0.59 and 0.55 for women and men, respectively. Those used to predict diabetes were 0.60 and 0.58 for women and men, respectively.
WHtR was a better predictor of hypertension and diabetes than BMI and WC in Chile. The definition of cutoff points specific for the Chilean population could be implemented in future screening programs aiming to identify high-risk individuals.</abstract><cop>Kidlington</cop><pub>Elsevier Inc</pub><doi>10.1016/j.nut.2020.110932</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4384-4962</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0899-9007 |
ispartof | Nutrition (Burbank, Los Angeles County, Calif.), 2020-11, Vol.79-80, p.110932-110932, Article 110932 |
issn | 0899-9007 1873-1244 |
language | eng |
recordid | cdi_proquest_miscellaneous_2437841226 |
source | Access via ScienceDirect (Elsevier); ProQuest Central |
subjects | Anthropometry Blood pressure Body mass index Body size Cardiovascular diseases Chronic disease Chronic illnesses Confidence intervals Datasets Diabetes Diabetes mellitus (non-insulin dependent) Disease Hypertension Men Morbidity Obesity Population studies Risk factors Women Womens health |
title | Is waist-to-height ratio a better predictor of hypertension and type 2 diabetes than body mass index and waist circumference in the Chilean population? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T16%3A41%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Is%20waist-to-height%20ratio%20a%20better%20predictor%20of%20hypertension%20and%20type%202%20diabetes%20than%20body%20mass%20index%20and%20waist%20circumference%20in%20the%20Chilean%20population?&rft.jtitle=Nutrition%20(Burbank,%20Los%20Angeles%20County,%20Calif.)&rft.au=Petermann-Rocha,%20Fanny&rft.aucorp=ELHOC-Chile%20Research%20Consortium&rft.date=2020-11&rft.volume=79-80&rft.spage=110932&rft.epage=110932&rft.pages=110932-110932&rft.artnum=110932&rft.issn=0899-9007&rft.eissn=1873-1244&rft_id=info:doi/10.1016/j.nut.2020.110932&rft_dat=%3Cproquest_cross%3E2437841226%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2457583925&rft_id=info:pmid/&rft_els_id=S089990072030215X&rfr_iscdi=true |