Resource-use efficiency drives overyielding via enhanced complementarity
Overyielding, the primary metric for assessing biodiversity effects on ecosystem functions, is often partitioned into “complementarity” and “selection” components, but this reveals nothing about the role of increased resource use, resource-use efficiency, or trait plasticity. We obtained multiple ov...
Gespeichert in:
Veröffentlicht in: | Oecologia 2020-08, Vol.193 (4), p.995-1010 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1010 |
---|---|
container_issue | 4 |
container_start_page | 995 |
container_title | Oecologia |
container_volume | 193 |
creator | Mason, Norman W. H. Orwin, Kate H. Lambie, Suzanne Waugh, Deanne Pronger, Jack Carmona, Carlos Perez Mudge, Paul |
description | Overyielding, the primary metric for assessing biodiversity effects on ecosystem functions, is often partitioned into “complementarity” and “selection” components, but this reveals nothing about the role of increased resource use, resource-use efficiency, or trait plasticity. We obtained multiple overyielding values by comparing productivity in a five-species mixture to expected values from its component monocultures at a) six levels of nitrogen addition (spanning 0–500 kg N ha⁻¹ year⁻¹) and b) across four seasons. We also measured light, water, and nitrogen use, resource-use efficiency, and three functional traits—leaf nitrogen content, specific leaf area, and leaf area ratio—n mixtures and monocultures. We found strong evidence for non-transgressive overyielding. This was strongest in spring, with mixture productivity exceeding expected values by 20 kg dry matter ha⁻¹ day⁻¹. Peak overyielding was driven by enhanced complementarity, with the two non-N₂-fixing forb species far exceeding expected productivity in mixtures. Peak overyielding also coincided with higher water use in the mixture than for any monoculture, and enhanced mixture-resource-use efficiency. There was only weak evidence that trait plasticity influenced overyielding or resource use. Our findings suggest that when complementarity drives overyielding in grassland mixtures, and this is made possible both by increased water use and enhanced efficiency in water, nitrogen, and light use. Our results also suggest that mixtures offer a viable compromise between productivity, resource-use efficiency, and reduced environmental impacts (i.e., nitrate leaching) from intensive agriculture. |
doi_str_mv | 10.1007/s00442-020-04732-7 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2437403038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A634144825</galeid><jstor_id>48696177</jstor_id><sourcerecordid>A634144825</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-f050be36ab4178620724ba7e7125cc48f2da951d69c2e317bb5a5599580d42b03</originalsourceid><addsrcrecordid>eNp9kV2L1DAUhosoOK7-AUEoeKMXXU--muRyWdRdWBBWvQ5pejpmaJMxaQfn35uxoo6I5OKEw_Oc5PBW1XMClwRAvskAnNMGKDTAJaONfFBtCC8Xopl-WG0AqG6U4Ppx9STnHQDhRIhNdXOPOS7JYbNkrHEYvPMY3LHukz9gruMB09Hj2PuwrQ_e1hi-2OCwr12c9iNOGGab_Hx8Wj0a7Jjx2c96UX1-9_bT9U1z9-H97fXVXeO4FHMzgIAOWWs7TqRqKUjKOytREiqc42qgvdWC9K12FBmRXSesEFoLBT2nHbCL6tU6d5_i1wXzbCafHY6jDRiXbChnkgMDpgr68i90V1YN5XcnSkndKviD2toRjQ9DnJN1p6HmqmWccK6oKNTlP6hyepy8iwEHX_pnwuszoTAzfpu3dsnZ3H68P2fpyroUc044mH3yk01HQ8Cc8jVrvqbka37ka2SR2CrlAoctpt_b_dd6sVq7PMf06x2uWt0SKdl3GAqugA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438796808</pqid></control><display><type>article</type><title>Resource-use efficiency drives overyielding via enhanced complementarity</title><source>SpringerNature Journals</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Mason, Norman W. H. ; Orwin, Kate H. ; Lambie, Suzanne ; Waugh, Deanne ; Pronger, Jack ; Carmona, Carlos Perez ; Mudge, Paul</creator><creatorcontrib>Mason, Norman W. H. ; Orwin, Kate H. ; Lambie, Suzanne ; Waugh, Deanne ; Pronger, Jack ; Carmona, Carlos Perez ; Mudge, Paul</creatorcontrib><description>Overyielding, the primary metric for assessing biodiversity effects on ecosystem functions, is often partitioned into “complementarity” and “selection” components, but this reveals nothing about the role of increased resource use, resource-use efficiency, or trait plasticity. We obtained multiple overyielding values by comparing productivity in a five-species mixture to expected values from its component monocultures at a) six levels of nitrogen addition (spanning 0–500 kg N ha⁻¹ year⁻¹) and b) across four seasons. We also measured light, water, and nitrogen use, resource-use efficiency, and three functional traits—leaf nitrogen content, specific leaf area, and leaf area ratio—n mixtures and monocultures. We found strong evidence for non-transgressive overyielding. This was strongest in spring, with mixture productivity exceeding expected values by 20 kg dry matter ha⁻¹ day⁻¹. Peak overyielding was driven by enhanced complementarity, with the two non-N₂-fixing forb species far exceeding expected productivity in mixtures. Peak overyielding also coincided with higher water use in the mixture than for any monoculture, and enhanced mixture-resource-use efficiency. There was only weak evidence that trait plasticity influenced overyielding or resource use. Our findings suggest that when complementarity drives overyielding in grassland mixtures, and this is made possible both by increased water use and enhanced efficiency in water, nitrogen, and light use. Our results also suggest that mixtures offer a viable compromise between productivity, resource-use efficiency, and reduced environmental impacts (i.e., nitrate leaching) from intensive agriculture.</description><identifier>ISSN: 0029-8549</identifier><identifier>EISSN: 1432-1939</identifier><identifier>DOI: 10.1007/s00442-020-04732-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Science + Business Media</publisher><subject>Biodiversity ; Biomedical and Life Sciences ; Complementarity ; Dry matter ; Ecological function ; Ecology ; Ecosystem assessment ; ECOSYSTEM ECOLOGY - ORIGINAL RESEARCH ; Efficiency ; Environmental impact ; Expected values ; Grasslands ; Hydrology/Water Resources ; Intensive farming ; Leaching ; Leaf area ; Leaves ; Life Sciences ; Monoculture ; Monoculture (aquaculture) ; Nitrogen ; Nitrogen fixation ; Plant Sciences ; Plastic properties ; Plasticity ; Productivity ; Resource efficiency ; Water use</subject><ispartof>Oecologia, 2020-08, Vol.193 (4), p.995-1010</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-f050be36ab4178620724ba7e7125cc48f2da951d69c2e317bb5a5599580d42b03</citedby><cites>FETCH-LOGICAL-c475t-f050be36ab4178620724ba7e7125cc48f2da951d69c2e317bb5a5599580d42b03</cites><orcidid>0000-0002-6445-4285</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/48696177$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/48696177$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27924,27925,41488,42557,51319,58017,58250</link.rule.ids></links><search><creatorcontrib>Mason, Norman W. H.</creatorcontrib><creatorcontrib>Orwin, Kate H.</creatorcontrib><creatorcontrib>Lambie, Suzanne</creatorcontrib><creatorcontrib>Waugh, Deanne</creatorcontrib><creatorcontrib>Pronger, Jack</creatorcontrib><creatorcontrib>Carmona, Carlos Perez</creatorcontrib><creatorcontrib>Mudge, Paul</creatorcontrib><title>Resource-use efficiency drives overyielding via enhanced complementarity</title><title>Oecologia</title><addtitle>Oecologia</addtitle><description>Overyielding, the primary metric for assessing biodiversity effects on ecosystem functions, is often partitioned into “complementarity” and “selection” components, but this reveals nothing about the role of increased resource use, resource-use efficiency, or trait plasticity. We obtained multiple overyielding values by comparing productivity in a five-species mixture to expected values from its component monocultures at a) six levels of nitrogen addition (spanning 0–500 kg N ha⁻¹ year⁻¹) and b) across four seasons. We also measured light, water, and nitrogen use, resource-use efficiency, and three functional traits—leaf nitrogen content, specific leaf area, and leaf area ratio—n mixtures and monocultures. We found strong evidence for non-transgressive overyielding. This was strongest in spring, with mixture productivity exceeding expected values by 20 kg dry matter ha⁻¹ day⁻¹. Peak overyielding was driven by enhanced complementarity, with the two non-N₂-fixing forb species far exceeding expected productivity in mixtures. Peak overyielding also coincided with higher water use in the mixture than for any monoculture, and enhanced mixture-resource-use efficiency. There was only weak evidence that trait plasticity influenced overyielding or resource use. Our findings suggest that when complementarity drives overyielding in grassland mixtures, and this is made possible both by increased water use and enhanced efficiency in water, nitrogen, and light use. Our results also suggest that mixtures offer a viable compromise between productivity, resource-use efficiency, and reduced environmental impacts (i.e., nitrate leaching) from intensive agriculture.</description><subject>Biodiversity</subject><subject>Biomedical and Life Sciences</subject><subject>Complementarity</subject><subject>Dry matter</subject><subject>Ecological function</subject><subject>Ecology</subject><subject>Ecosystem assessment</subject><subject>ECOSYSTEM ECOLOGY - ORIGINAL RESEARCH</subject><subject>Efficiency</subject><subject>Environmental impact</subject><subject>Expected values</subject><subject>Grasslands</subject><subject>Hydrology/Water Resources</subject><subject>Intensive farming</subject><subject>Leaching</subject><subject>Leaf area</subject><subject>Leaves</subject><subject>Life Sciences</subject><subject>Monoculture</subject><subject>Monoculture (aquaculture)</subject><subject>Nitrogen</subject><subject>Nitrogen fixation</subject><subject>Plant Sciences</subject><subject>Plastic properties</subject><subject>Plasticity</subject><subject>Productivity</subject><subject>Resource efficiency</subject><subject>Water use</subject><issn>0029-8549</issn><issn>1432-1939</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kV2L1DAUhosoOK7-AUEoeKMXXU--muRyWdRdWBBWvQ5pejpmaJMxaQfn35uxoo6I5OKEw_Oc5PBW1XMClwRAvskAnNMGKDTAJaONfFBtCC8Xopl-WG0AqG6U4Ppx9STnHQDhRIhNdXOPOS7JYbNkrHEYvPMY3LHukz9gruMB09Hj2PuwrQ_e1hi-2OCwr12c9iNOGGab_Hx8Wj0a7Jjx2c96UX1-9_bT9U1z9-H97fXVXeO4FHMzgIAOWWs7TqRqKUjKOytREiqc42qgvdWC9K12FBmRXSesEFoLBT2nHbCL6tU6d5_i1wXzbCafHY6jDRiXbChnkgMDpgr68i90V1YN5XcnSkndKviD2toRjQ9DnJN1p6HmqmWccK6oKNTlP6hyepy8iwEHX_pnwuszoTAzfpu3dsnZ3H68P2fpyroUc044mH3yk01HQ8Cc8jVrvqbka37ka2SR2CrlAoctpt_b_dd6sVq7PMf06x2uWt0SKdl3GAqugA</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Mason, Norman W. H.</creator><creator>Orwin, Kate H.</creator><creator>Lambie, Suzanne</creator><creator>Waugh, Deanne</creator><creator>Pronger, Jack</creator><creator>Carmona, Carlos Perez</creator><creator>Mudge, Paul</creator><general>Springer Science + Business Media</general><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>7TN</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>H95</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6445-4285</orcidid></search><sort><creationdate>20200801</creationdate><title>Resource-use efficiency drives overyielding via enhanced complementarity</title><author>Mason, Norman W. H. ; Orwin, Kate H. ; Lambie, Suzanne ; Waugh, Deanne ; Pronger, Jack ; Carmona, Carlos Perez ; Mudge, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-f050be36ab4178620724ba7e7125cc48f2da951d69c2e317bb5a5599580d42b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biodiversity</topic><topic>Biomedical and Life Sciences</topic><topic>Complementarity</topic><topic>Dry matter</topic><topic>Ecological function</topic><topic>Ecology</topic><topic>Ecosystem assessment</topic><topic>ECOSYSTEM ECOLOGY - ORIGINAL RESEARCH</topic><topic>Efficiency</topic><topic>Environmental impact</topic><topic>Expected values</topic><topic>Grasslands</topic><topic>Hydrology/Water Resources</topic><topic>Intensive farming</topic><topic>Leaching</topic><topic>Leaf area</topic><topic>Leaves</topic><topic>Life Sciences</topic><topic>Monoculture</topic><topic>Monoculture (aquaculture)</topic><topic>Nitrogen</topic><topic>Nitrogen fixation</topic><topic>Plant Sciences</topic><topic>Plastic properties</topic><topic>Plasticity</topic><topic>Productivity</topic><topic>Resource efficiency</topic><topic>Water use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mason, Norman W. H.</creatorcontrib><creatorcontrib>Orwin, Kate H.</creatorcontrib><creatorcontrib>Lambie, Suzanne</creatorcontrib><creatorcontrib>Waugh, Deanne</creatorcontrib><creatorcontrib>Pronger, Jack</creatorcontrib><creatorcontrib>Carmona, Carlos Perez</creatorcontrib><creatorcontrib>Mudge, Paul</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Oecologia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mason, Norman W. H.</au><au>Orwin, Kate H.</au><au>Lambie, Suzanne</au><au>Waugh, Deanne</au><au>Pronger, Jack</au><au>Carmona, Carlos Perez</au><au>Mudge, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resource-use efficiency drives overyielding via enhanced complementarity</atitle><jtitle>Oecologia</jtitle><stitle>Oecologia</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>193</volume><issue>4</issue><spage>995</spage><epage>1010</epage><pages>995-1010</pages><issn>0029-8549</issn><eissn>1432-1939</eissn><abstract>Overyielding, the primary metric for assessing biodiversity effects on ecosystem functions, is often partitioned into “complementarity” and “selection” components, but this reveals nothing about the role of increased resource use, resource-use efficiency, or trait plasticity. We obtained multiple overyielding values by comparing productivity in a five-species mixture to expected values from its component monocultures at a) six levels of nitrogen addition (spanning 0–500 kg N ha⁻¹ year⁻¹) and b) across four seasons. We also measured light, water, and nitrogen use, resource-use efficiency, and three functional traits—leaf nitrogen content, specific leaf area, and leaf area ratio—n mixtures and monocultures. We found strong evidence for non-transgressive overyielding. This was strongest in spring, with mixture productivity exceeding expected values by 20 kg dry matter ha⁻¹ day⁻¹. Peak overyielding was driven by enhanced complementarity, with the two non-N₂-fixing forb species far exceeding expected productivity in mixtures. Peak overyielding also coincided with higher water use in the mixture than for any monoculture, and enhanced mixture-resource-use efficiency. There was only weak evidence that trait plasticity influenced overyielding or resource use. Our findings suggest that when complementarity drives overyielding in grassland mixtures, and this is made possible both by increased water use and enhanced efficiency in water, nitrogen, and light use. Our results also suggest that mixtures offer a viable compromise between productivity, resource-use efficiency, and reduced environmental impacts (i.e., nitrate leaching) from intensive agriculture.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Science + Business Media</pub><doi>10.1007/s00442-020-04732-7</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-6445-4285</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-8549 |
ispartof | Oecologia, 2020-08, Vol.193 (4), p.995-1010 |
issn | 0029-8549 1432-1939 |
language | eng |
recordid | cdi_proquest_miscellaneous_2437403038 |
source | SpringerNature Journals; JSTOR Archive Collection A-Z Listing |
subjects | Biodiversity Biomedical and Life Sciences Complementarity Dry matter Ecological function Ecology Ecosystem assessment ECOSYSTEM ECOLOGY - ORIGINAL RESEARCH Efficiency Environmental impact Expected values Grasslands Hydrology/Water Resources Intensive farming Leaching Leaf area Leaves Life Sciences Monoculture Monoculture (aquaculture) Nitrogen Nitrogen fixation Plant Sciences Plastic properties Plasticity Productivity Resource efficiency Water use |
title | Resource-use efficiency drives overyielding via enhanced complementarity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A10%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resource-use%20efficiency%20drives%20overyielding%20via%20enhanced%20complementarity&rft.jtitle=Oecologia&rft.au=Mason,%20Norman%20W.%20H.&rft.date=2020-08-01&rft.volume=193&rft.issue=4&rft.spage=995&rft.epage=1010&rft.pages=995-1010&rft.issn=0029-8549&rft.eissn=1432-1939&rft_id=info:doi/10.1007/s00442-020-04732-7&rft_dat=%3Cgale_proqu%3EA634144825%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2438796808&rft_id=info:pmid/&rft_galeid=A634144825&rft_jstor_id=48696177&rfr_iscdi=true |