Mitochondrial import, health and mtDNA copy number variability seen when using type II and type V CRISPR effectors

Current methodologies for targeting the mitochondrial genome for research and/or therapy development in mitochondrial diseases are restricted by practical limitations and technical inflexibility. A molecular toolbox for CRISPR-mediated mitochondrial genome editing is desirable, as this could enable...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cell science 2020-09, Vol.133 (18)
Hauptverfasser: Antón, Zuriñe, Mullally, Grace, Ford, Holly C, van der Kamp, Marc W, Szczelkun, Mark D, Lane, Jon D
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 18
container_start_page
container_title Journal of cell science
container_volume 133
creator Antón, Zuriñe
Mullally, Grace
Ford, Holly C
van der Kamp, Marc W
Szczelkun, Mark D
Lane, Jon D
description Current methodologies for targeting the mitochondrial genome for research and/or therapy development in mitochondrial diseases are restricted by practical limitations and technical inflexibility. A molecular toolbox for CRISPR-mediated mitochondrial genome editing is desirable, as this could enable targeting of mtDNA haplotypes using the precision and tuneability of CRISPR enzymes. Such 'MitoCRISPR' systems described to date lack reproducibility and independent corroboration. We have explored the requirements for MitoCRISPR in human cells by CRISPR nuclease engineering, including the use of alternative mitochondrial protein targeting sequences and smaller paralogues, and the application of guide (g)RNA modifications for mitochondrial import. We demonstrate varied mitochondrial targeting efficiencies and effects on mitochondrial dynamics/function of different CRISPR nucleases, with bacterium ND2006 (Lb) Cas12a being better targeted and tolerated than Cas9 variants. We also provide evidence of Cas9 gRNA association with mitochondria in HeLa cells and isolated yeast mitochondria, even in the absence of a targeting RNA aptamer. Our data link mitochondrial-targeted LbCas12a/crRNA with increased mtDNA copy number dependent upon DNA binding and cleavage activity. We discuss reproducibility issues and the future steps necessary for MitoCRISPR.
doi_str_mv 10.1242/jcs.248468
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2437400351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2437400351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-17887e692c7ee7be8c0a68f7d0d706a6a090503b8f47b0b3157cd08891ebc5473</originalsourceid><addsrcrecordid>eNo9kMlOwzAURS0EomXY8AHIS4QIPMdO7CyrMlViEtM2cpwXmioTtgPq3xPawua-uzjvLg4hRwzOWSjCi4Vx56FQIlZbZMyElEHCuNwmY4CQBUnE-YjsObcAABkmcpeMeKgEjxSMib0vfWvmbZPbUle0rLvW-jM6R135OdVNTmt_-TChpu2WtOnrDC390gOblVXpl9QhNvR7PkTvyuaD-mWHdDZbfa76O50-z16enikWBRrfWndAdgpdOTzc3H3ydn31Or0N7h5vZtPJXWB4xH3ApFIS4yQ0ElFmqAzoWBUyh1xCrGMNCUTAM1UImUHGWSRNDkolDDMTCcn3ycl6t7PtZ4_Op3XpDFaVbrDtXRoKLgUAj9iAnq5RY1vnLBZpZ8ta22XKIP11nA6O07XjAT7e7PZZjfk_-ieV_wAgCXbq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2437400351</pqid></control><display><type>article</type><title>Mitochondrial import, health and mtDNA copy number variability seen when using type II and type V CRISPR effectors</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>Company of Biologists</source><creator>Antón, Zuriñe ; Mullally, Grace ; Ford, Holly C ; van der Kamp, Marc W ; Szczelkun, Mark D ; Lane, Jon D</creator><creatorcontrib>Antón, Zuriñe ; Mullally, Grace ; Ford, Holly C ; van der Kamp, Marc W ; Szczelkun, Mark D ; Lane, Jon D</creatorcontrib><description>Current methodologies for targeting the mitochondrial genome for research and/or therapy development in mitochondrial diseases are restricted by practical limitations and technical inflexibility. A molecular toolbox for CRISPR-mediated mitochondrial genome editing is desirable, as this could enable targeting of mtDNA haplotypes using the precision and tuneability of CRISPR enzymes. Such 'MitoCRISPR' systems described to date lack reproducibility and independent corroboration. We have explored the requirements for MitoCRISPR in human cells by CRISPR nuclease engineering, including the use of alternative mitochondrial protein targeting sequences and smaller paralogues, and the application of guide (g)RNA modifications for mitochondrial import. We demonstrate varied mitochondrial targeting efficiencies and effects on mitochondrial dynamics/function of different CRISPR nucleases, with bacterium ND2006 (Lb) Cas12a being better targeted and tolerated than Cas9 variants. We also provide evidence of Cas9 gRNA association with mitochondria in HeLa cells and isolated yeast mitochondria, even in the absence of a targeting RNA aptamer. Our data link mitochondrial-targeted LbCas12a/crRNA with increased mtDNA copy number dependent upon DNA binding and cleavage activity. We discuss reproducibility issues and the future steps necessary for MitoCRISPR.</description><identifier>ISSN: 0021-9533</identifier><identifier>EISSN: 1477-9137</identifier><identifier>DOI: 10.1242/jcs.248468</identifier><identifier>PMID: 32843580</identifier><language>eng</language><publisher>England</publisher><ispartof>Journal of cell science, 2020-09, Vol.133 (18)</ispartof><rights>2020. Published by The Company of Biologists Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-17887e692c7ee7be8c0a68f7d0d706a6a090503b8f47b0b3157cd08891ebc5473</citedby><cites>FETCH-LOGICAL-c353t-17887e692c7ee7be8c0a68f7d0d706a6a090503b8f47b0b3157cd08891ebc5473</cites><orcidid>0000-0002-6828-5888 ; 0000-0002-8060-3359 ; 0000-0002-2501-6602 ; 0000-0002-0175-8548</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,3665,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32843580$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Antón, Zuriñe</creatorcontrib><creatorcontrib>Mullally, Grace</creatorcontrib><creatorcontrib>Ford, Holly C</creatorcontrib><creatorcontrib>van der Kamp, Marc W</creatorcontrib><creatorcontrib>Szczelkun, Mark D</creatorcontrib><creatorcontrib>Lane, Jon D</creatorcontrib><title>Mitochondrial import, health and mtDNA copy number variability seen when using type II and type V CRISPR effectors</title><title>Journal of cell science</title><addtitle>J Cell Sci</addtitle><description>Current methodologies for targeting the mitochondrial genome for research and/or therapy development in mitochondrial diseases are restricted by practical limitations and technical inflexibility. A molecular toolbox for CRISPR-mediated mitochondrial genome editing is desirable, as this could enable targeting of mtDNA haplotypes using the precision and tuneability of CRISPR enzymes. Such 'MitoCRISPR' systems described to date lack reproducibility and independent corroboration. We have explored the requirements for MitoCRISPR in human cells by CRISPR nuclease engineering, including the use of alternative mitochondrial protein targeting sequences and smaller paralogues, and the application of guide (g)RNA modifications for mitochondrial import. We demonstrate varied mitochondrial targeting efficiencies and effects on mitochondrial dynamics/function of different CRISPR nucleases, with bacterium ND2006 (Lb) Cas12a being better targeted and tolerated than Cas9 variants. We also provide evidence of Cas9 gRNA association with mitochondria in HeLa cells and isolated yeast mitochondria, even in the absence of a targeting RNA aptamer. Our data link mitochondrial-targeted LbCas12a/crRNA with increased mtDNA copy number dependent upon DNA binding and cleavage activity. We discuss reproducibility issues and the future steps necessary for MitoCRISPR.</description><issn>0021-9533</issn><issn>1477-9137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kMlOwzAURS0EomXY8AHIS4QIPMdO7CyrMlViEtM2cpwXmioTtgPq3xPawua-uzjvLg4hRwzOWSjCi4Vx56FQIlZbZMyElEHCuNwmY4CQBUnE-YjsObcAABkmcpeMeKgEjxSMib0vfWvmbZPbUle0rLvW-jM6R135OdVNTmt_-TChpu2WtOnrDC390gOblVXpl9QhNvR7PkTvyuaD-mWHdDZbfa76O50-z16enikWBRrfWndAdgpdOTzc3H3ydn31Or0N7h5vZtPJXWB4xH3ApFIS4yQ0ElFmqAzoWBUyh1xCrGMNCUTAM1UImUHGWSRNDkolDDMTCcn3ycl6t7PtZ4_Op3XpDFaVbrDtXRoKLgUAj9iAnq5RY1vnLBZpZ8ta22XKIP11nA6O07XjAT7e7PZZjfk_-ieV_wAgCXbq</recordid><startdate>20200916</startdate><enddate>20200916</enddate><creator>Antón, Zuriñe</creator><creator>Mullally, Grace</creator><creator>Ford, Holly C</creator><creator>van der Kamp, Marc W</creator><creator>Szczelkun, Mark D</creator><creator>Lane, Jon D</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6828-5888</orcidid><orcidid>https://orcid.org/0000-0002-8060-3359</orcidid><orcidid>https://orcid.org/0000-0002-2501-6602</orcidid><orcidid>https://orcid.org/0000-0002-0175-8548</orcidid></search><sort><creationdate>20200916</creationdate><title>Mitochondrial import, health and mtDNA copy number variability seen when using type II and type V CRISPR effectors</title><author>Antón, Zuriñe ; Mullally, Grace ; Ford, Holly C ; van der Kamp, Marc W ; Szczelkun, Mark D ; Lane, Jon D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-17887e692c7ee7be8c0a68f7d0d706a6a090503b8f47b0b3157cd08891ebc5473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Antón, Zuriñe</creatorcontrib><creatorcontrib>Mullally, Grace</creatorcontrib><creatorcontrib>Ford, Holly C</creatorcontrib><creatorcontrib>van der Kamp, Marc W</creatorcontrib><creatorcontrib>Szczelkun, Mark D</creatorcontrib><creatorcontrib>Lane, Jon D</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of cell science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Antón, Zuriñe</au><au>Mullally, Grace</au><au>Ford, Holly C</au><au>van der Kamp, Marc W</au><au>Szczelkun, Mark D</au><au>Lane, Jon D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitochondrial import, health and mtDNA copy number variability seen when using type II and type V CRISPR effectors</atitle><jtitle>Journal of cell science</jtitle><addtitle>J Cell Sci</addtitle><date>2020-09-16</date><risdate>2020</risdate><volume>133</volume><issue>18</issue><issn>0021-9533</issn><eissn>1477-9137</eissn><abstract>Current methodologies for targeting the mitochondrial genome for research and/or therapy development in mitochondrial diseases are restricted by practical limitations and technical inflexibility. A molecular toolbox for CRISPR-mediated mitochondrial genome editing is desirable, as this could enable targeting of mtDNA haplotypes using the precision and tuneability of CRISPR enzymes. Such 'MitoCRISPR' systems described to date lack reproducibility and independent corroboration. We have explored the requirements for MitoCRISPR in human cells by CRISPR nuclease engineering, including the use of alternative mitochondrial protein targeting sequences and smaller paralogues, and the application of guide (g)RNA modifications for mitochondrial import. We demonstrate varied mitochondrial targeting efficiencies and effects on mitochondrial dynamics/function of different CRISPR nucleases, with bacterium ND2006 (Lb) Cas12a being better targeted and tolerated than Cas9 variants. We also provide evidence of Cas9 gRNA association with mitochondria in HeLa cells and isolated yeast mitochondria, even in the absence of a targeting RNA aptamer. Our data link mitochondrial-targeted LbCas12a/crRNA with increased mtDNA copy number dependent upon DNA binding and cleavage activity. We discuss reproducibility issues and the future steps necessary for MitoCRISPR.</abstract><cop>England</cop><pmid>32843580</pmid><doi>10.1242/jcs.248468</doi><orcidid>https://orcid.org/0000-0002-6828-5888</orcidid><orcidid>https://orcid.org/0000-0002-8060-3359</orcidid><orcidid>https://orcid.org/0000-0002-2501-6602</orcidid><orcidid>https://orcid.org/0000-0002-0175-8548</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9533
ispartof Journal of cell science, 2020-09, Vol.133 (18)
issn 0021-9533
1477-9137
language eng
recordid cdi_proquest_miscellaneous_2437400351
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; Company of Biologists
title Mitochondrial import, health and mtDNA copy number variability seen when using type II and type V CRISPR effectors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T03%3A14%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitochondrial%20import,%20health%20and%20mtDNA%20copy%20number%20variability%20seen%20when%20using%20type%20II%20and%20type%20V%20CRISPR%20effectors&rft.jtitle=Journal%20of%20cell%20science&rft.au=Ant%C3%B3n,%20Zuri%C3%B1e&rft.date=2020-09-16&rft.volume=133&rft.issue=18&rft.issn=0021-9533&rft.eissn=1477-9137&rft_id=info:doi/10.1242/jcs.248468&rft_dat=%3Cproquest_cross%3E2437400351%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2437400351&rft_id=info:pmid/32843580&rfr_iscdi=true