Large-Area Nonfullerene Organic Solar Cell Modules Fabricated by a Temperature-Independent Printing Method

Despite recent breakthroughs in the fabrication of spin-coated small-area devices (≤0.1 cm2) with power conversion efficiencies (PCEs) of more than 17%, printed large-area organic solar cells (OSCs) are significantly less efficient because of the intrinsic differences between the coating dynamics of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2020-09, Vol.12 (37), p.41877-41885
Hauptverfasser: Jeong, Soyeong, Park, Byoungwook, Hong, Soonil, Kim, Seok, Kim, Jehan, Kwon, Sooncheol, Lee, Jong-Hoon, Lee, Min Soo, Park, Jong Chun, Kang, Hongkyu, Lee, Kwanghee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 41885
container_issue 37
container_start_page 41877
container_title ACS applied materials & interfaces
container_volume 12
creator Jeong, Soyeong
Park, Byoungwook
Hong, Soonil
Kim, Seok
Kim, Jehan
Kwon, Sooncheol
Lee, Jong-Hoon
Lee, Min Soo
Park, Jong Chun
Kang, Hongkyu
Lee, Kwanghee
description Despite recent breakthroughs in the fabrication of spin-coated small-area devices (≤0.1 cm2) with power conversion efficiencies (PCEs) of more than 17%, printed large-area organic solar cells (OSCs) are significantly less efficient because of the intrinsic differences between the coating dynamics of the two types of OSCs. The PCEs of printed large-area (∼100 cm2) OSCs have typically been decreased compared with those of small-area spin-coated devices. In this work, an efficient low-temperature printing method to fabricate high-efficiency large-area nonfullerene-based OSC modules is successfully demonstrated. A systematic study of the relationship between the concentration of the photoactive solution and the resulting film properties reveals that the large-area modules (85 cm2) produced in this work deliver excellent performance, yielding PCEs of up to 8.18% with a geometric fill factor of 85%. These novel OSC modules are ∼87% as efficient as small-area printed single cells (cell PCE ∼9.43% with 1 cm2).
doi_str_mv 10.1021/acsami.0c12190
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2437121725</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2437121725</sourcerecordid><originalsourceid>FETCH-LOGICAL-a307t-bfdf77c9e75c5e2d8b83bc472adb8874300a5c1de8f4bc1876e70ec56c6b53033</originalsourceid><addsrcrecordid>eNp1kM1Lw0AQxYMoWKtXz3sUIXU_s-mxFKuF1grW87Ifk5qSbOJucuh_byTFm5eZ4fHewPslyT3BM4IpedI26rqcYUsomeOLZELmnKc5FfTy7-b8OrmJ8YhxxigWk-S40eEA6SKARm-NL_qqggAe0C4ctC8t-mgqHdASqgptG9dXENFKm1Ba3YFD5oQ02kPdQtBdHyBdewctDMN36D2Uviv9AW2h-2rcbXJV6CrC3XlPk8_V8375mm52L-vlYpNqhmWXmsIVUto5SGEFUJebnBnLJdXO5LnkDGMtLHGQF9xYkssMJAYrMpsZwTBj0-Rh_NuG5ruH2Km6jHYooD00fVSUMzkgklQM1tlotaGJMUCh2lDWOpwUweoXqhqhqjPUIfA4BgZdHZs--KHJf-YfIZR6rg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2437121725</pqid></control><display><type>article</type><title>Large-Area Nonfullerene Organic Solar Cell Modules Fabricated by a Temperature-Independent Printing Method</title><source>ACS Publications</source><creator>Jeong, Soyeong ; Park, Byoungwook ; Hong, Soonil ; Kim, Seok ; Kim, Jehan ; Kwon, Sooncheol ; Lee, Jong-Hoon ; Lee, Min Soo ; Park, Jong Chun ; Kang, Hongkyu ; Lee, Kwanghee</creator><creatorcontrib>Jeong, Soyeong ; Park, Byoungwook ; Hong, Soonil ; Kim, Seok ; Kim, Jehan ; Kwon, Sooncheol ; Lee, Jong-Hoon ; Lee, Min Soo ; Park, Jong Chun ; Kang, Hongkyu ; Lee, Kwanghee</creatorcontrib><description>Despite recent breakthroughs in the fabrication of spin-coated small-area devices (≤0.1 cm2) with power conversion efficiencies (PCEs) of more than 17%, printed large-area organic solar cells (OSCs) are significantly less efficient because of the intrinsic differences between the coating dynamics of the two types of OSCs. The PCEs of printed large-area (∼100 cm2) OSCs have typically been decreased compared with those of small-area spin-coated devices. In this work, an efficient low-temperature printing method to fabricate high-efficiency large-area nonfullerene-based OSC modules is successfully demonstrated. A systematic study of the relationship between the concentration of the photoactive solution and the resulting film properties reveals that the large-area modules (85 cm2) produced in this work deliver excellent performance, yielding PCEs of up to 8.18% with a geometric fill factor of 85%. These novel OSC modules are ∼87% as efficient as small-area printed single cells (cell PCE ∼9.43% with 1 cm2).</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.0c12190</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Organic Electronic Devices</subject><ispartof>ACS applied materials &amp; interfaces, 2020-09, Vol.12 (37), p.41877-41885</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a307t-bfdf77c9e75c5e2d8b83bc472adb8874300a5c1de8f4bc1876e70ec56c6b53033</citedby><cites>FETCH-LOGICAL-a307t-bfdf77c9e75c5e2d8b83bc472adb8874300a5c1de8f4bc1876e70ec56c6b53033</cites><orcidid>0000-0003-2799-9558 ; 0000-0002-5907-8625</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.0c12190$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.0c12190$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Jeong, Soyeong</creatorcontrib><creatorcontrib>Park, Byoungwook</creatorcontrib><creatorcontrib>Hong, Soonil</creatorcontrib><creatorcontrib>Kim, Seok</creatorcontrib><creatorcontrib>Kim, Jehan</creatorcontrib><creatorcontrib>Kwon, Sooncheol</creatorcontrib><creatorcontrib>Lee, Jong-Hoon</creatorcontrib><creatorcontrib>Lee, Min Soo</creatorcontrib><creatorcontrib>Park, Jong Chun</creatorcontrib><creatorcontrib>Kang, Hongkyu</creatorcontrib><creatorcontrib>Lee, Kwanghee</creatorcontrib><title>Large-Area Nonfullerene Organic Solar Cell Modules Fabricated by a Temperature-Independent Printing Method</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Despite recent breakthroughs in the fabrication of spin-coated small-area devices (≤0.1 cm2) with power conversion efficiencies (PCEs) of more than 17%, printed large-area organic solar cells (OSCs) are significantly less efficient because of the intrinsic differences between the coating dynamics of the two types of OSCs. The PCEs of printed large-area (∼100 cm2) OSCs have typically been decreased compared with those of small-area spin-coated devices. In this work, an efficient low-temperature printing method to fabricate high-efficiency large-area nonfullerene-based OSC modules is successfully demonstrated. A systematic study of the relationship between the concentration of the photoactive solution and the resulting film properties reveals that the large-area modules (85 cm2) produced in this work deliver excellent performance, yielding PCEs of up to 8.18% with a geometric fill factor of 85%. These novel OSC modules are ∼87% as efficient as small-area printed single cells (cell PCE ∼9.43% with 1 cm2).</description><subject>Organic Electronic Devices</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Lw0AQxYMoWKtXz3sUIXU_s-mxFKuF1grW87Ifk5qSbOJucuh_byTFm5eZ4fHewPslyT3BM4IpedI26rqcYUsomeOLZELmnKc5FfTy7-b8OrmJ8YhxxigWk-S40eEA6SKARm-NL_qqggAe0C4ctC8t-mgqHdASqgptG9dXENFKm1Ba3YFD5oQ02kPdQtBdHyBdewctDMN36D2Uviv9AW2h-2rcbXJV6CrC3XlPk8_V8375mm52L-vlYpNqhmWXmsIVUto5SGEFUJebnBnLJdXO5LnkDGMtLHGQF9xYkssMJAYrMpsZwTBj0-Rh_NuG5ruH2Km6jHYooD00fVSUMzkgklQM1tlotaGJMUCh2lDWOpwUweoXqhqhqjPUIfA4BgZdHZs--KHJf-YfIZR6rg</recordid><startdate>20200916</startdate><enddate>20200916</enddate><creator>Jeong, Soyeong</creator><creator>Park, Byoungwook</creator><creator>Hong, Soonil</creator><creator>Kim, Seok</creator><creator>Kim, Jehan</creator><creator>Kwon, Sooncheol</creator><creator>Lee, Jong-Hoon</creator><creator>Lee, Min Soo</creator><creator>Park, Jong Chun</creator><creator>Kang, Hongkyu</creator><creator>Lee, Kwanghee</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2799-9558</orcidid><orcidid>https://orcid.org/0000-0002-5907-8625</orcidid></search><sort><creationdate>20200916</creationdate><title>Large-Area Nonfullerene Organic Solar Cell Modules Fabricated by a Temperature-Independent Printing Method</title><author>Jeong, Soyeong ; Park, Byoungwook ; Hong, Soonil ; Kim, Seok ; Kim, Jehan ; Kwon, Sooncheol ; Lee, Jong-Hoon ; Lee, Min Soo ; Park, Jong Chun ; Kang, Hongkyu ; Lee, Kwanghee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a307t-bfdf77c9e75c5e2d8b83bc472adb8874300a5c1de8f4bc1876e70ec56c6b53033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Organic Electronic Devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeong, Soyeong</creatorcontrib><creatorcontrib>Park, Byoungwook</creatorcontrib><creatorcontrib>Hong, Soonil</creatorcontrib><creatorcontrib>Kim, Seok</creatorcontrib><creatorcontrib>Kim, Jehan</creatorcontrib><creatorcontrib>Kwon, Sooncheol</creatorcontrib><creatorcontrib>Lee, Jong-Hoon</creatorcontrib><creatorcontrib>Lee, Min Soo</creatorcontrib><creatorcontrib>Park, Jong Chun</creatorcontrib><creatorcontrib>Kang, Hongkyu</creatorcontrib><creatorcontrib>Lee, Kwanghee</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeong, Soyeong</au><au>Park, Byoungwook</au><au>Hong, Soonil</au><au>Kim, Seok</au><au>Kim, Jehan</au><au>Kwon, Sooncheol</au><au>Lee, Jong-Hoon</au><au>Lee, Min Soo</au><au>Park, Jong Chun</au><au>Kang, Hongkyu</au><au>Lee, Kwanghee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-Area Nonfullerene Organic Solar Cell Modules Fabricated by a Temperature-Independent Printing Method</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2020-09-16</date><risdate>2020</risdate><volume>12</volume><issue>37</issue><spage>41877</spage><epage>41885</epage><pages>41877-41885</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Despite recent breakthroughs in the fabrication of spin-coated small-area devices (≤0.1 cm2) with power conversion efficiencies (PCEs) of more than 17%, printed large-area organic solar cells (OSCs) are significantly less efficient because of the intrinsic differences between the coating dynamics of the two types of OSCs. The PCEs of printed large-area (∼100 cm2) OSCs have typically been decreased compared with those of small-area spin-coated devices. In this work, an efficient low-temperature printing method to fabricate high-efficiency large-area nonfullerene-based OSC modules is successfully demonstrated. A systematic study of the relationship between the concentration of the photoactive solution and the resulting film properties reveals that the large-area modules (85 cm2) produced in this work deliver excellent performance, yielding PCEs of up to 8.18% with a geometric fill factor of 85%. These novel OSC modules are ∼87% as efficient as small-area printed single cells (cell PCE ∼9.43% with 1 cm2).</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.0c12190</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2799-9558</orcidid><orcidid>https://orcid.org/0000-0002-5907-8625</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2020-09, Vol.12 (37), p.41877-41885
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2437121725
source ACS Publications
subjects Organic Electronic Devices
title Large-Area Nonfullerene Organic Solar Cell Modules Fabricated by a Temperature-Independent Printing Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A52%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-Area%20Nonfullerene%20Organic%20Solar%20Cell%20Modules%20Fabricated%20by%20a%20Temperature-Independent%20Printing%20Method&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Jeong,%20Soyeong&rft.date=2020-09-16&rft.volume=12&rft.issue=37&rft.spage=41877&rft.epage=41885&rft.pages=41877-41885&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.0c12190&rft_dat=%3Cproquest_cross%3E2437121725%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2437121725&rft_id=info:pmid/&rfr_iscdi=true