Research on electrocardiogram classification using deep residual network with pyramid convolution structure
Recently, deep neural networks (DNNs) have been widely used in the field of electrocardiogram (ECG) signal classification, but the previous models have limited ability to extract features from raw ECG data. In this paper, a deep residual network model based on pyramidal convolutional layers (PC-DRN)...
Gespeichert in:
Veröffentlicht in: | Sheng wu yi xue gong cheng xue za zhi 2020-08, Vol.37 (4), p.692-698 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | chi |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 698 |
---|---|
container_issue | 4 |
container_start_page | 692 |
container_title | Sheng wu yi xue gong cheng xue za zhi |
container_volume | 37 |
creator | Jiang, Mingfeng Lu, Yi Li, Yang Xiang, Yikun Zhang, Jucheng Wang, Zhikang |
description | Recently, deep neural networks (DNNs) have been widely used in the field of electrocardiogram (ECG) signal classification, but the previous models have limited ability to extract features from raw ECG data. In this paper, a deep residual network model based on pyramidal convolutional layers (PC-DRN) was proposed to implement ECG signal classification. The pyramidal convolutional (PC) layer could simultaneously extract multi-scale features from the original ECG data. And then, a deep residual network was designed to train the classification model for arrhythmia detection. The public dataset provided by the physionet computing in cardiology challenge 2017(CinC2017) was used to validate the classification experiment of 4 types of ECG data. In this paper, the harmonic mean
of classification accuracy and recall was selected as the evaluation indexes. The experimental results showed that the average sequence level
(
) of PC-DRN was improved from 0.857 to 0.920, and the average set level
(
) was improved from 0.876 |
doi_str_mv | 10.7507/1001-5515.201912048 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2437121230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2437121230</sourcerecordid><originalsourceid>FETCH-LOGICAL-p154t-138193ea2945309a613b26b8177b2a3f716ea96747216ede66afe9f81992d04c3</originalsourceid><addsrcrecordid>eNpdkF1LwzAUhnOhuDH3CwQJeONNZ07SNu2lDL9gIIhelzQ93eK6piaNY__eoNMLr87h8DwvL4eQC2ALmTF5A4xBkmWQLTiDEjhLixMy_btOyNx7UzPGC5bnhTgjE8GLlLFCTsn2BT0qpzfU9hQ71KOzWrnG2LVTO6o7Fd3WaDWaCARv-jVtEAfq0JsmqI72OO6t29K9GTd0OETLNFTb_tN24Vvyowt6DA7PyWmrOo_z45yRt_u71-Vjsnp-eFrerpIBsnRMQBRQClS8TDPBSpWDqHleFyBlzZVoJeSoylymksetwTxXLZZtlEresFSLGbn-yR2c_Qjox2pnvMauUz3a4CueCgkcuGARvfqHvtvg-tguUhkHKAuASF0eqVDvsKkGZ3bKHarfN4ov4qV0tA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2452119811</pqid></control><display><type>article</type><title>Research on electrocardiogram classification using deep residual network with pyramid convolution structure</title><source>MEDLINE</source><source>PMC (PubMed Central)</source><creator>Jiang, Mingfeng ; Lu, Yi ; Li, Yang ; Xiang, Yikun ; Zhang, Jucheng ; Wang, Zhikang</creator><creatorcontrib>Jiang, Mingfeng ; Lu, Yi ; Li, Yang ; Xiang, Yikun ; Zhang, Jucheng ; Wang, Zhikang</creatorcontrib><description>Recently, deep neural networks (DNNs) have been widely used in the field of electrocardiogram (ECG) signal classification, but the previous models have limited ability to extract features from raw ECG data. In this paper, a deep residual network model based on pyramidal convolutional layers (PC-DRN) was proposed to implement ECG signal classification. The pyramidal convolutional (PC) layer could simultaneously extract multi-scale features from the original ECG data. And then, a deep residual network was designed to train the classification model for arrhythmia detection. The public dataset provided by the physionet computing in cardiology challenge 2017(CinC2017) was used to validate the classification experiment of 4 types of ECG data. In this paper, the harmonic mean
of classification accuracy and recall was selected as the evaluation indexes. The experimental results showed that the average sequence level
(
) of PC-DRN was improved from 0.857 to 0.920, and the average set level
(
) was improved from 0.876</description><identifier>ISSN: 1001-5515</identifier><identifier>DOI: 10.7507/1001-5515.201912048</identifier><identifier>PMID: 32840087</identifier><language>chi</language><publisher>China: Sichuan Society for Biomedical Engineering</publisher><subject>Arrhythmia ; Arrhythmias, Cardiac ; Artificial neural networks ; Cardiac arrhythmia ; Cardiology ; Classification ; Convolution ; Disease Progression ; EKG ; Electrocardiography ; Feature extraction ; Humans ; Neural networks ; Neural Networks, Computer ; Signal classification</subject><ispartof>Sheng wu yi xue gong cheng xue za zhi, 2020-08, Vol.37 (4), p.692-698</ispartof><rights>Copyright Sichuan Society for Biomedical Engineering 2020</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32840087$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Mingfeng</creatorcontrib><creatorcontrib>Lu, Yi</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Xiang, Yikun</creatorcontrib><creatorcontrib>Zhang, Jucheng</creatorcontrib><creatorcontrib>Wang, Zhikang</creatorcontrib><title>Research on electrocardiogram classification using deep residual network with pyramid convolution structure</title><title>Sheng wu yi xue gong cheng xue za zhi</title><addtitle>Sheng Wu Yi Xue Gong Cheng Xue Za Zhi</addtitle><description>Recently, deep neural networks (DNNs) have been widely used in the field of electrocardiogram (ECG) signal classification, but the previous models have limited ability to extract features from raw ECG data. In this paper, a deep residual network model based on pyramidal convolutional layers (PC-DRN) was proposed to implement ECG signal classification. The pyramidal convolutional (PC) layer could simultaneously extract multi-scale features from the original ECG data. And then, a deep residual network was designed to train the classification model for arrhythmia detection. The public dataset provided by the physionet computing in cardiology challenge 2017(CinC2017) was used to validate the classification experiment of 4 types of ECG data. In this paper, the harmonic mean
of classification accuracy and recall was selected as the evaluation indexes. The experimental results showed that the average sequence level
(
) of PC-DRN was improved from 0.857 to 0.920, and the average set level
(
) was improved from 0.876</description><subject>Arrhythmia</subject><subject>Arrhythmias, Cardiac</subject><subject>Artificial neural networks</subject><subject>Cardiac arrhythmia</subject><subject>Cardiology</subject><subject>Classification</subject><subject>Convolution</subject><subject>Disease Progression</subject><subject>EKG</subject><subject>Electrocardiography</subject><subject>Feature extraction</subject><subject>Humans</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Signal classification</subject><issn>1001-5515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkF1LwzAUhnOhuDH3CwQJeONNZ07SNu2lDL9gIIhelzQ93eK6piaNY__eoNMLr87h8DwvL4eQC2ALmTF5A4xBkmWQLTiDEjhLixMy_btOyNx7UzPGC5bnhTgjE8GLlLFCTsn2BT0qpzfU9hQ71KOzWrnG2LVTO6o7Fd3WaDWaCARv-jVtEAfq0JsmqI72OO6t29K9GTd0OETLNFTb_tN24Vvyowt6DA7PyWmrOo_z45yRt_u71-Vjsnp-eFrerpIBsnRMQBRQClS8TDPBSpWDqHleFyBlzZVoJeSoylymksetwTxXLZZtlEresFSLGbn-yR2c_Qjox2pnvMauUz3a4CueCgkcuGARvfqHvtvg-tguUhkHKAuASF0eqVDvsKkGZ3bKHarfN4ov4qV0tA</recordid><startdate>20200825</startdate><enddate>20200825</enddate><creator>Jiang, Mingfeng</creator><creator>Lu, Yi</creator><creator>Li, Yang</creator><creator>Xiang, Yikun</creator><creator>Zhang, Jucheng</creator><creator>Wang, Zhikang</creator><general>Sichuan Society for Biomedical Engineering</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20200825</creationdate><title>Research on electrocardiogram classification using deep residual network with pyramid convolution structure</title><author>Jiang, Mingfeng ; Lu, Yi ; Li, Yang ; Xiang, Yikun ; Zhang, Jucheng ; Wang, Zhikang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p154t-138193ea2945309a613b26b8177b2a3f716ea96747216ede66afe9f81992d04c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>chi</language><creationdate>2020</creationdate><topic>Arrhythmia</topic><topic>Arrhythmias, Cardiac</topic><topic>Artificial neural networks</topic><topic>Cardiac arrhythmia</topic><topic>Cardiology</topic><topic>Classification</topic><topic>Convolution</topic><topic>Disease Progression</topic><topic>EKG</topic><topic>Electrocardiography</topic><topic>Feature extraction</topic><topic>Humans</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Signal classification</topic><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Mingfeng</creatorcontrib><creatorcontrib>Lu, Yi</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Xiang, Yikun</creatorcontrib><creatorcontrib>Zhang, Jucheng</creatorcontrib><creatorcontrib>Wang, Zhikang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Sheng wu yi xue gong cheng xue za zhi</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Mingfeng</au><au>Lu, Yi</au><au>Li, Yang</au><au>Xiang, Yikun</au><au>Zhang, Jucheng</au><au>Wang, Zhikang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on electrocardiogram classification using deep residual network with pyramid convolution structure</atitle><jtitle>Sheng wu yi xue gong cheng xue za zhi</jtitle><addtitle>Sheng Wu Yi Xue Gong Cheng Xue Za Zhi</addtitle><date>2020-08-25</date><risdate>2020</risdate><volume>37</volume><issue>4</issue><spage>692</spage><epage>698</epage><pages>692-698</pages><issn>1001-5515</issn><abstract>Recently, deep neural networks (DNNs) have been widely used in the field of electrocardiogram (ECG) signal classification, but the previous models have limited ability to extract features from raw ECG data. In this paper, a deep residual network model based on pyramidal convolutional layers (PC-DRN) was proposed to implement ECG signal classification. The pyramidal convolutional (PC) layer could simultaneously extract multi-scale features from the original ECG data. And then, a deep residual network was designed to train the classification model for arrhythmia detection. The public dataset provided by the physionet computing in cardiology challenge 2017(CinC2017) was used to validate the classification experiment of 4 types of ECG data. In this paper, the harmonic mean
of classification accuracy and recall was selected as the evaluation indexes. The experimental results showed that the average sequence level
(
) of PC-DRN was improved from 0.857 to 0.920, and the average set level
(
) was improved from 0.876</abstract><cop>China</cop><pub>Sichuan Society for Biomedical Engineering</pub><pmid>32840087</pmid><doi>10.7507/1001-5515.201912048</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1001-5515 |
ispartof | Sheng wu yi xue gong cheng xue za zhi, 2020-08, Vol.37 (4), p.692-698 |
issn | 1001-5515 |
language | chi |
recordid | cdi_proquest_miscellaneous_2437121230 |
source | MEDLINE; PMC (PubMed Central) |
subjects | Arrhythmia Arrhythmias, Cardiac Artificial neural networks Cardiac arrhythmia Cardiology Classification Convolution Disease Progression EKG Electrocardiography Feature extraction Humans Neural networks Neural Networks, Computer Signal classification |
title | Research on electrocardiogram classification using deep residual network with pyramid convolution structure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A36%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20electrocardiogram%20classification%20using%20deep%20residual%20network%20with%20pyramid%20convolution%20structure&rft.jtitle=Sheng%20wu%20yi%20xue%20gong%20cheng%20xue%20za%20zhi&rft.au=Jiang,%20Mingfeng&rft.date=2020-08-25&rft.volume=37&rft.issue=4&rft.spage=692&rft.epage=698&rft.pages=692-698&rft.issn=1001-5515&rft_id=info:doi/10.7507/1001-5515.201912048&rft_dat=%3Cproquest_pubme%3E2437121230%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2452119811&rft_id=info:pmid/32840087&rfr_iscdi=true |