Research on electrocardiogram classification using deep residual network with pyramid convolution structure

Recently, deep neural networks (DNNs) have been widely used in the field of electrocardiogram (ECG) signal classification, but the previous models have limited ability to extract features from raw ECG data. In this paper, a deep residual network model based on pyramidal convolutional layers (PC-DRN)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sheng wu yi xue gong cheng xue za zhi 2020-08, Vol.37 (4), p.692-698
Hauptverfasser: Jiang, Mingfeng, Lu, Yi, Li, Yang, Xiang, Yikun, Zhang, Jucheng, Wang, Zhikang
Format: Artikel
Sprache:chi
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 698
container_issue 4
container_start_page 692
container_title Sheng wu yi xue gong cheng xue za zhi
container_volume 37
creator Jiang, Mingfeng
Lu, Yi
Li, Yang
Xiang, Yikun
Zhang, Jucheng
Wang, Zhikang
description Recently, deep neural networks (DNNs) have been widely used in the field of electrocardiogram (ECG) signal classification, but the previous models have limited ability to extract features from raw ECG data. In this paper, a deep residual network model based on pyramidal convolutional layers (PC-DRN) was proposed to implement ECG signal classification. The pyramidal convolutional (PC) layer could simultaneously extract multi-scale features from the original ECG data. And then, a deep residual network was designed to train the classification model for arrhythmia detection. The public dataset provided by the physionet computing in cardiology challenge 2017(CinC2017) was used to validate the classification experiment of 4 types of ECG data. In this paper, the harmonic mean of classification accuracy and recall was selected as the evaluation indexes. The experimental results showed that the average sequence level ( ) of PC-DRN was improved from 0.857 to 0.920, and the average set level ( ) was improved from 0.876
doi_str_mv 10.7507/1001-5515.201912048
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2437121230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2437121230</sourcerecordid><originalsourceid>FETCH-LOGICAL-p154t-138193ea2945309a613b26b8177b2a3f716ea96747216ede66afe9f81992d04c3</originalsourceid><addsrcrecordid>eNpdkF1LwzAUhnOhuDH3CwQJeONNZ07SNu2lDL9gIIhelzQ93eK6piaNY__eoNMLr87h8DwvL4eQC2ALmTF5A4xBkmWQLTiDEjhLixMy_btOyNx7UzPGC5bnhTgjE8GLlLFCTsn2BT0qpzfU9hQ71KOzWrnG2LVTO6o7Fd3WaDWaCARv-jVtEAfq0JsmqI72OO6t29K9GTd0OETLNFTb_tN24Vvyowt6DA7PyWmrOo_z45yRt_u71-Vjsnp-eFrerpIBsnRMQBRQClS8TDPBSpWDqHleFyBlzZVoJeSoylymksetwTxXLZZtlEresFSLGbn-yR2c_Qjox2pnvMauUz3a4CueCgkcuGARvfqHvtvg-tguUhkHKAuASF0eqVDvsKkGZ3bKHarfN4ov4qV0tA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2452119811</pqid></control><display><type>article</type><title>Research on electrocardiogram classification using deep residual network with pyramid convolution structure</title><source>MEDLINE</source><source>PMC (PubMed Central)</source><creator>Jiang, Mingfeng ; Lu, Yi ; Li, Yang ; Xiang, Yikun ; Zhang, Jucheng ; Wang, Zhikang</creator><creatorcontrib>Jiang, Mingfeng ; Lu, Yi ; Li, Yang ; Xiang, Yikun ; Zhang, Jucheng ; Wang, Zhikang</creatorcontrib><description>Recently, deep neural networks (DNNs) have been widely used in the field of electrocardiogram (ECG) signal classification, but the previous models have limited ability to extract features from raw ECG data. In this paper, a deep residual network model based on pyramidal convolutional layers (PC-DRN) was proposed to implement ECG signal classification. The pyramidal convolutional (PC) layer could simultaneously extract multi-scale features from the original ECG data. And then, a deep residual network was designed to train the classification model for arrhythmia detection. The public dataset provided by the physionet computing in cardiology challenge 2017(CinC2017) was used to validate the classification experiment of 4 types of ECG data. In this paper, the harmonic mean of classification accuracy and recall was selected as the evaluation indexes. The experimental results showed that the average sequence level ( ) of PC-DRN was improved from 0.857 to 0.920, and the average set level ( ) was improved from 0.876</description><identifier>ISSN: 1001-5515</identifier><identifier>DOI: 10.7507/1001-5515.201912048</identifier><identifier>PMID: 32840087</identifier><language>chi</language><publisher>China: Sichuan Society for Biomedical Engineering</publisher><subject>Arrhythmia ; Arrhythmias, Cardiac ; Artificial neural networks ; Cardiac arrhythmia ; Cardiology ; Classification ; Convolution ; Disease Progression ; EKG ; Electrocardiography ; Feature extraction ; Humans ; Neural networks ; Neural Networks, Computer ; Signal classification</subject><ispartof>Sheng wu yi xue gong cheng xue za zhi, 2020-08, Vol.37 (4), p.692-698</ispartof><rights>Copyright Sichuan Society for Biomedical Engineering 2020</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32840087$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Mingfeng</creatorcontrib><creatorcontrib>Lu, Yi</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Xiang, Yikun</creatorcontrib><creatorcontrib>Zhang, Jucheng</creatorcontrib><creatorcontrib>Wang, Zhikang</creatorcontrib><title>Research on electrocardiogram classification using deep residual network with pyramid convolution structure</title><title>Sheng wu yi xue gong cheng xue za zhi</title><addtitle>Sheng Wu Yi Xue Gong Cheng Xue Za Zhi</addtitle><description>Recently, deep neural networks (DNNs) have been widely used in the field of electrocardiogram (ECG) signal classification, but the previous models have limited ability to extract features from raw ECG data. In this paper, a deep residual network model based on pyramidal convolutional layers (PC-DRN) was proposed to implement ECG signal classification. The pyramidal convolutional (PC) layer could simultaneously extract multi-scale features from the original ECG data. And then, a deep residual network was designed to train the classification model for arrhythmia detection. The public dataset provided by the physionet computing in cardiology challenge 2017(CinC2017) was used to validate the classification experiment of 4 types of ECG data. In this paper, the harmonic mean of classification accuracy and recall was selected as the evaluation indexes. The experimental results showed that the average sequence level ( ) of PC-DRN was improved from 0.857 to 0.920, and the average set level ( ) was improved from 0.876</description><subject>Arrhythmia</subject><subject>Arrhythmias, Cardiac</subject><subject>Artificial neural networks</subject><subject>Cardiac arrhythmia</subject><subject>Cardiology</subject><subject>Classification</subject><subject>Convolution</subject><subject>Disease Progression</subject><subject>EKG</subject><subject>Electrocardiography</subject><subject>Feature extraction</subject><subject>Humans</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Signal classification</subject><issn>1001-5515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkF1LwzAUhnOhuDH3CwQJeONNZ07SNu2lDL9gIIhelzQ93eK6piaNY__eoNMLr87h8DwvL4eQC2ALmTF5A4xBkmWQLTiDEjhLixMy_btOyNx7UzPGC5bnhTgjE8GLlLFCTsn2BT0qpzfU9hQ71KOzWrnG2LVTO6o7Fd3WaDWaCARv-jVtEAfq0JsmqI72OO6t29K9GTd0OETLNFTb_tN24Vvyowt6DA7PyWmrOo_z45yRt_u71-Vjsnp-eFrerpIBsnRMQBRQClS8TDPBSpWDqHleFyBlzZVoJeSoylymksetwTxXLZZtlEresFSLGbn-yR2c_Qjox2pnvMauUz3a4CueCgkcuGARvfqHvtvg-tguUhkHKAuASF0eqVDvsKkGZ3bKHarfN4ov4qV0tA</recordid><startdate>20200825</startdate><enddate>20200825</enddate><creator>Jiang, Mingfeng</creator><creator>Lu, Yi</creator><creator>Li, Yang</creator><creator>Xiang, Yikun</creator><creator>Zhang, Jucheng</creator><creator>Wang, Zhikang</creator><general>Sichuan Society for Biomedical Engineering</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20200825</creationdate><title>Research on electrocardiogram classification using deep residual network with pyramid convolution structure</title><author>Jiang, Mingfeng ; Lu, Yi ; Li, Yang ; Xiang, Yikun ; Zhang, Jucheng ; Wang, Zhikang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p154t-138193ea2945309a613b26b8177b2a3f716ea96747216ede66afe9f81992d04c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>chi</language><creationdate>2020</creationdate><topic>Arrhythmia</topic><topic>Arrhythmias, Cardiac</topic><topic>Artificial neural networks</topic><topic>Cardiac arrhythmia</topic><topic>Cardiology</topic><topic>Classification</topic><topic>Convolution</topic><topic>Disease Progression</topic><topic>EKG</topic><topic>Electrocardiography</topic><topic>Feature extraction</topic><topic>Humans</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Signal classification</topic><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Mingfeng</creatorcontrib><creatorcontrib>Lu, Yi</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Xiang, Yikun</creatorcontrib><creatorcontrib>Zhang, Jucheng</creatorcontrib><creatorcontrib>Wang, Zhikang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Sheng wu yi xue gong cheng xue za zhi</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Mingfeng</au><au>Lu, Yi</au><au>Li, Yang</au><au>Xiang, Yikun</au><au>Zhang, Jucheng</au><au>Wang, Zhikang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on electrocardiogram classification using deep residual network with pyramid convolution structure</atitle><jtitle>Sheng wu yi xue gong cheng xue za zhi</jtitle><addtitle>Sheng Wu Yi Xue Gong Cheng Xue Za Zhi</addtitle><date>2020-08-25</date><risdate>2020</risdate><volume>37</volume><issue>4</issue><spage>692</spage><epage>698</epage><pages>692-698</pages><issn>1001-5515</issn><abstract>Recently, deep neural networks (DNNs) have been widely used in the field of electrocardiogram (ECG) signal classification, but the previous models have limited ability to extract features from raw ECG data. In this paper, a deep residual network model based on pyramidal convolutional layers (PC-DRN) was proposed to implement ECG signal classification. The pyramidal convolutional (PC) layer could simultaneously extract multi-scale features from the original ECG data. And then, a deep residual network was designed to train the classification model for arrhythmia detection. The public dataset provided by the physionet computing in cardiology challenge 2017(CinC2017) was used to validate the classification experiment of 4 types of ECG data. In this paper, the harmonic mean of classification accuracy and recall was selected as the evaluation indexes. The experimental results showed that the average sequence level ( ) of PC-DRN was improved from 0.857 to 0.920, and the average set level ( ) was improved from 0.876</abstract><cop>China</cop><pub>Sichuan Society for Biomedical Engineering</pub><pmid>32840087</pmid><doi>10.7507/1001-5515.201912048</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1001-5515
ispartof Sheng wu yi xue gong cheng xue za zhi, 2020-08, Vol.37 (4), p.692-698
issn 1001-5515
language chi
recordid cdi_proquest_miscellaneous_2437121230
source MEDLINE; PMC (PubMed Central)
subjects Arrhythmia
Arrhythmias, Cardiac
Artificial neural networks
Cardiac arrhythmia
Cardiology
Classification
Convolution
Disease Progression
EKG
Electrocardiography
Feature extraction
Humans
Neural networks
Neural Networks, Computer
Signal classification
title Research on electrocardiogram classification using deep residual network with pyramid convolution structure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A36%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20electrocardiogram%20classification%20using%20deep%20residual%20network%20with%20pyramid%20convolution%20structure&rft.jtitle=Sheng%20wu%20yi%20xue%20gong%20cheng%20xue%20za%20zhi&rft.au=Jiang,%20Mingfeng&rft.date=2020-08-25&rft.volume=37&rft.issue=4&rft.spage=692&rft.epage=698&rft.pages=692-698&rft.issn=1001-5515&rft_id=info:doi/10.7507/1001-5515.201912048&rft_dat=%3Cproquest_pubme%3E2437121230%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2452119811&rft_id=info:pmid/32840087&rfr_iscdi=true