Transformation of xylan into value-added biocommodities using Thermobacillus composti GH10 xylanase
•T. composti GH10 xylanase is thermostable, halotolerant and ethanol-resistant.•X-ray structure of TcXyn10A reveals molecular details of xylan recognition.•TcXyn10A improves efficiency of pretreated lignocellulosic biomass hydrolysis.•The enzyme liberates xylooligosaccharides from xylan with elevate...
Gespeichert in:
Veröffentlicht in: | Carbohydrate polymers 2020-11, Vol.247, p.116714-116714, Article 116714 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 116714 |
---|---|
container_issue | |
container_start_page | 116714 |
container_title | Carbohydrate polymers |
container_volume | 247 |
creator | Sepulchro, Ana Gabriela Veiga Pellegrini, Vanessa O.A. Briganti, Lorenzo de Araujo, Evandro A. de Araujo, Simara S. Polikarpov, Igor |
description | •T. composti GH10 xylanase is thermostable, halotolerant and ethanol-resistant.•X-ray structure of TcXyn10A reveals molecular details of xylan recognition.•TcXyn10A improves efficiency of pretreated lignocellulosic biomass hydrolysis.•The enzyme liberates xylooligosaccharides from xylan with elevated yields.
Enzymatic transformation of xylans into renewable fuels and value-added products is mediated by xylanases. Here we describe the biochemical and X-ray structural characterization of Thermobacillus composti GH10 xylanase (TcXyn10A) at 2.1 Å resolution aiming to unravel details of its recognition of glucurono- and arabinoxylan at a molecular level. TcXyn10A improves the efficiency of pretreated lignocellulosic biomass hydrolysis by a commercial enzyme cocktail causing a 15.35 % increase in xylose release and 4.38 % glucose release after 24 h of reaction. The enzyme releases predominantly xylobiose and xylotriose, as well as MeGlcA3 × 3 (from beechwood glucuronoxylan) and a range of decorated xylooligosaccharides (XOS) from rye arabinoxylan, with Ara2 × 2 being the major product. The enzyme liberates XOS with the yields of 29.09 % for beechwood glucuronoxylan and 16.98 % for rye arabinoxylan. Finally, TcXyn10A has a high thermal stability, halotolerance, and resistance to ethanol, biochemical properties that can be desirable for a number of industrial applications. |
doi_str_mv | 10.1016/j.carbpol.2020.116714 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2436870985</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0144861720308882</els_id><sourcerecordid>2436870985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-ea0cc3812985c86c3d86bb53af1ca078f990a6f0601656b3afae9da4bf4e0d093</originalsourceid><addsrcrecordid>eNqFkLFOwzAQhi0EoqXwCCCPLCl24jjOhFAFLVIlljJbjn0BV0lc7KSib4-rFFa8WDp999_dh9AtJXNKKH_YzrXy1c4185SksUZ5QdkZmlJRlAnNGDtHU0IZSwSnxQRdhbAl8XFKLtEkS0VaCkanSG-86kLtfKt66zrsavx9aFSHbdc7vFfNAIkyBgyurNOubZ2xvYWAh2C7D7z5BN-6SmnbNEPAEdi50Fu8XFEyBqkA1-iiVk2Am9M_Q-8vz5vFKlm_LV8XT-tEZzzvE1BE60zQuFmuBdeZEbyq8kzVVCtSiLosieI14fH8nFexrqA0ilU1A2JImc3Q_Zi78-5rgNDL1gYNTdwC3BBkyjIuChLjI5qPqPYuBA-13HnbKn-QlMijX7mVJ7_y6FeOfmPf3WnEULVg_rp-hUbgcQQgHrq34GXQFjoNxnrQvTTO_jPiB2V8kE0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2436870985</pqid></control><display><type>article</type><title>Transformation of xylan into value-added biocommodities using Thermobacillus composti GH10 xylanase</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Sepulchro, Ana Gabriela Veiga ; Pellegrini, Vanessa O.A. ; Briganti, Lorenzo ; de Araujo, Evandro A. ; de Araujo, Simara S. ; Polikarpov, Igor</creator><creatorcontrib>Sepulchro, Ana Gabriela Veiga ; Pellegrini, Vanessa O.A. ; Briganti, Lorenzo ; de Araujo, Evandro A. ; de Araujo, Simara S. ; Polikarpov, Igor</creatorcontrib><description>•T. composti GH10 xylanase is thermostable, halotolerant and ethanol-resistant.•X-ray structure of TcXyn10A reveals molecular details of xylan recognition.•TcXyn10A improves efficiency of pretreated lignocellulosic biomass hydrolysis.•The enzyme liberates xylooligosaccharides from xylan with elevated yields.
Enzymatic transformation of xylans into renewable fuels and value-added products is mediated by xylanases. Here we describe the biochemical and X-ray structural characterization of Thermobacillus composti GH10 xylanase (TcXyn10A) at 2.1 Å resolution aiming to unravel details of its recognition of glucurono- and arabinoxylan at a molecular level. TcXyn10A improves the efficiency of pretreated lignocellulosic biomass hydrolysis by a commercial enzyme cocktail causing a 15.35 % increase in xylose release and 4.38 % glucose release after 24 h of reaction. The enzyme releases predominantly xylobiose and xylotriose, as well as MeGlcA3 × 3 (from beechwood glucuronoxylan) and a range of decorated xylooligosaccharides (XOS) from rye arabinoxylan, with Ara2 × 2 being the major product. The enzyme liberates XOS with the yields of 29.09 % for beechwood glucuronoxylan and 16.98 % for rye arabinoxylan. Finally, TcXyn10A has a high thermal stability, halotolerance, and resistance to ethanol, biochemical properties that can be desirable for a number of industrial applications.</description><identifier>ISSN: 0144-8617</identifier><identifier>EISSN: 1879-1344</identifier><identifier>DOI: 10.1016/j.carbpol.2020.116714</identifier><identifier>PMID: 32829841</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Bacillales - enzymology ; Bioconversion ; Cleavage pattern ; Crystallographic structure ; Endo-1,4-beta Xylanases - metabolism ; Hydrolysis ; Prebiotics ; Substrate Specificity ; Xylan ; Xylans - chemistry ; Xylans - metabolism</subject><ispartof>Carbohydrate polymers, 2020-11, Vol.247, p.116714-116714, Article 116714</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright © 2020 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-ea0cc3812985c86c3d86bb53af1ca078f990a6f0601656b3afae9da4bf4e0d093</citedby><cites>FETCH-LOGICAL-c365t-ea0cc3812985c86c3d86bb53af1ca078f990a6f0601656b3afae9da4bf4e0d093</cites><orcidid>0000-0002-1550-8013 ; 0000-0002-2593-4446 ; 0000-0001-9496-4174</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbpol.2020.116714$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32829841$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sepulchro, Ana Gabriela Veiga</creatorcontrib><creatorcontrib>Pellegrini, Vanessa O.A.</creatorcontrib><creatorcontrib>Briganti, Lorenzo</creatorcontrib><creatorcontrib>de Araujo, Evandro A.</creatorcontrib><creatorcontrib>de Araujo, Simara S.</creatorcontrib><creatorcontrib>Polikarpov, Igor</creatorcontrib><title>Transformation of xylan into value-added biocommodities using Thermobacillus composti GH10 xylanase</title><title>Carbohydrate polymers</title><addtitle>Carbohydr Polym</addtitle><description>•T. composti GH10 xylanase is thermostable, halotolerant and ethanol-resistant.•X-ray structure of TcXyn10A reveals molecular details of xylan recognition.•TcXyn10A improves efficiency of pretreated lignocellulosic biomass hydrolysis.•The enzyme liberates xylooligosaccharides from xylan with elevated yields.
Enzymatic transformation of xylans into renewable fuels and value-added products is mediated by xylanases. Here we describe the biochemical and X-ray structural characterization of Thermobacillus composti GH10 xylanase (TcXyn10A) at 2.1 Å resolution aiming to unravel details of its recognition of glucurono- and arabinoxylan at a molecular level. TcXyn10A improves the efficiency of pretreated lignocellulosic biomass hydrolysis by a commercial enzyme cocktail causing a 15.35 % increase in xylose release and 4.38 % glucose release after 24 h of reaction. The enzyme releases predominantly xylobiose and xylotriose, as well as MeGlcA3 × 3 (from beechwood glucuronoxylan) and a range of decorated xylooligosaccharides (XOS) from rye arabinoxylan, with Ara2 × 2 being the major product. The enzyme liberates XOS with the yields of 29.09 % for beechwood glucuronoxylan and 16.98 % for rye arabinoxylan. Finally, TcXyn10A has a high thermal stability, halotolerance, and resistance to ethanol, biochemical properties that can be desirable for a number of industrial applications.</description><subject>Bacillales - enzymology</subject><subject>Bioconversion</subject><subject>Cleavage pattern</subject><subject>Crystallographic structure</subject><subject>Endo-1,4-beta Xylanases - metabolism</subject><subject>Hydrolysis</subject><subject>Prebiotics</subject><subject>Substrate Specificity</subject><subject>Xylan</subject><subject>Xylans - chemistry</subject><subject>Xylans - metabolism</subject><issn>0144-8617</issn><issn>1879-1344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkLFOwzAQhi0EoqXwCCCPLCl24jjOhFAFLVIlljJbjn0BV0lc7KSib4-rFFa8WDp999_dh9AtJXNKKH_YzrXy1c4185SksUZ5QdkZmlJRlAnNGDtHU0IZSwSnxQRdhbAl8XFKLtEkS0VaCkanSG-86kLtfKt66zrsavx9aFSHbdc7vFfNAIkyBgyurNOubZ2xvYWAh2C7D7z5BN-6SmnbNEPAEdi50Fu8XFEyBqkA1-iiVk2Am9M_Q-8vz5vFKlm_LV8XT-tEZzzvE1BE60zQuFmuBdeZEbyq8kzVVCtSiLosieI14fH8nFexrqA0ilU1A2JImc3Q_Zi78-5rgNDL1gYNTdwC3BBkyjIuChLjI5qPqPYuBA-13HnbKn-QlMijX7mVJ7_y6FeOfmPf3WnEULVg_rp-hUbgcQQgHrq34GXQFjoNxnrQvTTO_jPiB2V8kE0</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Sepulchro, Ana Gabriela Veiga</creator><creator>Pellegrini, Vanessa O.A.</creator><creator>Briganti, Lorenzo</creator><creator>de Araujo, Evandro A.</creator><creator>de Araujo, Simara S.</creator><creator>Polikarpov, Igor</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1550-8013</orcidid><orcidid>https://orcid.org/0000-0002-2593-4446</orcidid><orcidid>https://orcid.org/0000-0001-9496-4174</orcidid></search><sort><creationdate>20201101</creationdate><title>Transformation of xylan into value-added biocommodities using Thermobacillus composti GH10 xylanase</title><author>Sepulchro, Ana Gabriela Veiga ; Pellegrini, Vanessa O.A. ; Briganti, Lorenzo ; de Araujo, Evandro A. ; de Araujo, Simara S. ; Polikarpov, Igor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-ea0cc3812985c86c3d86bb53af1ca078f990a6f0601656b3afae9da4bf4e0d093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bacillales - enzymology</topic><topic>Bioconversion</topic><topic>Cleavage pattern</topic><topic>Crystallographic structure</topic><topic>Endo-1,4-beta Xylanases - metabolism</topic><topic>Hydrolysis</topic><topic>Prebiotics</topic><topic>Substrate Specificity</topic><topic>Xylan</topic><topic>Xylans - chemistry</topic><topic>Xylans - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sepulchro, Ana Gabriela Veiga</creatorcontrib><creatorcontrib>Pellegrini, Vanessa O.A.</creatorcontrib><creatorcontrib>Briganti, Lorenzo</creatorcontrib><creatorcontrib>de Araujo, Evandro A.</creatorcontrib><creatorcontrib>de Araujo, Simara S.</creatorcontrib><creatorcontrib>Polikarpov, Igor</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Carbohydrate polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sepulchro, Ana Gabriela Veiga</au><au>Pellegrini, Vanessa O.A.</au><au>Briganti, Lorenzo</au><au>de Araujo, Evandro A.</au><au>de Araujo, Simara S.</au><au>Polikarpov, Igor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transformation of xylan into value-added biocommodities using Thermobacillus composti GH10 xylanase</atitle><jtitle>Carbohydrate polymers</jtitle><addtitle>Carbohydr Polym</addtitle><date>2020-11-01</date><risdate>2020</risdate><volume>247</volume><spage>116714</spage><epage>116714</epage><pages>116714-116714</pages><artnum>116714</artnum><issn>0144-8617</issn><eissn>1879-1344</eissn><abstract>•T. composti GH10 xylanase is thermostable, halotolerant and ethanol-resistant.•X-ray structure of TcXyn10A reveals molecular details of xylan recognition.•TcXyn10A improves efficiency of pretreated lignocellulosic biomass hydrolysis.•The enzyme liberates xylooligosaccharides from xylan with elevated yields.
Enzymatic transformation of xylans into renewable fuels and value-added products is mediated by xylanases. Here we describe the biochemical and X-ray structural characterization of Thermobacillus composti GH10 xylanase (TcXyn10A) at 2.1 Å resolution aiming to unravel details of its recognition of glucurono- and arabinoxylan at a molecular level. TcXyn10A improves the efficiency of pretreated lignocellulosic biomass hydrolysis by a commercial enzyme cocktail causing a 15.35 % increase in xylose release and 4.38 % glucose release after 24 h of reaction. The enzyme releases predominantly xylobiose and xylotriose, as well as MeGlcA3 × 3 (from beechwood glucuronoxylan) and a range of decorated xylooligosaccharides (XOS) from rye arabinoxylan, with Ara2 × 2 being the major product. The enzyme liberates XOS with the yields of 29.09 % for beechwood glucuronoxylan and 16.98 % for rye arabinoxylan. Finally, TcXyn10A has a high thermal stability, halotolerance, and resistance to ethanol, biochemical properties that can be desirable for a number of industrial applications.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>32829841</pmid><doi>10.1016/j.carbpol.2020.116714</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1550-8013</orcidid><orcidid>https://orcid.org/0000-0002-2593-4446</orcidid><orcidid>https://orcid.org/0000-0001-9496-4174</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0144-8617 |
ispartof | Carbohydrate polymers, 2020-11, Vol.247, p.116714-116714, Article 116714 |
issn | 0144-8617 1879-1344 |
language | eng |
recordid | cdi_proquest_miscellaneous_2436870985 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Bacillales - enzymology Bioconversion Cleavage pattern Crystallographic structure Endo-1,4-beta Xylanases - metabolism Hydrolysis Prebiotics Substrate Specificity Xylan Xylans - chemistry Xylans - metabolism |
title | Transformation of xylan into value-added biocommodities using Thermobacillus composti GH10 xylanase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T23%3A20%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transformation%20of%20xylan%20into%20value-added%20biocommodities%20using%20Thermobacillus%20composti%20GH10%20xylanase&rft.jtitle=Carbohydrate%20polymers&rft.au=Sepulchro,%20Ana%20Gabriela%20Veiga&rft.date=2020-11-01&rft.volume=247&rft.spage=116714&rft.epage=116714&rft.pages=116714-116714&rft.artnum=116714&rft.issn=0144-8617&rft.eissn=1879-1344&rft_id=info:doi/10.1016/j.carbpol.2020.116714&rft_dat=%3Cproquest_cross%3E2436870985%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2436870985&rft_id=info:pmid/32829841&rft_els_id=S0144861720308882&rfr_iscdi=true |