Autocatalytic Formation of High‐Entropy Alloy Nanoparticles

High‐entropy alloy (HEA) nanoparticles hold great promise as tunable catalysts. Despite the fact that alloy formation is typically difficult in oxygen‐rich environments, we found that Pt‐Ir‐Pd‐Rh‐Ru nanoparticles can be synthesized under benign low‐temperature solvothermal conditions. In situ X‐ray...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2020-12, Vol.59 (49), p.21920-21924
Hauptverfasser: Broge, Nils L. N., Bondesgaard, Martin, Søndergaard‐Pedersen, Frederik, Roelsgaard, Martin, Iversen, Bo Brummerstedt
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21924
container_issue 49
container_start_page 21920
container_title Angewandte Chemie International Edition
container_volume 59
creator Broge, Nils L. N.
Bondesgaard, Martin
Søndergaard‐Pedersen, Frederik
Roelsgaard, Martin
Iversen, Bo Brummerstedt
description High‐entropy alloy (HEA) nanoparticles hold great promise as tunable catalysts. Despite the fact that alloy formation is typically difficult in oxygen‐rich environments, we found that Pt‐Ir‐Pd‐Rh‐Ru nanoparticles can be synthesized under benign low‐temperature solvothermal conditions. In situ X‐ray scattering and transmission electron microscopy reveal the solvothermal formation mechanism of Pt‐Ir‐Pd‐Rh‐Ru nanoparticles. For the individual metal acetylacetonate precursors, formation of single metal nanoparticles takes place at temperatures spanning from ca. 150 °C for Pd to ca. 350 °C for Ir. However, for the mixture, homogenous Pt‐Ir‐Pd‐Rh‐Ru HEA nanoparticles can be obtained around 200 °C due to autocatalyzed metal reduction at the (111) facets of the forming crystallites. The autocatalytic formation mechanism suggests that many types of HEA nanocatalysts should accessible with scalable solvothermal reactions, thereby providing broad availability and tunability. High‐entropy alloy (HEA) nanoparticles hold great promise as tunable catalysts, and surprisingly, Pt‐Ir‐Pd‐Rh‐Ru nanoparticles can be synthesized under benign low‐temperature solvothermal conditions. In situ X‐ray scattering and TEM reveal the solvothermal formation mechanism of Pt‐Ir‐Pd‐Rh‐Ru nanoparticles. The autocatalytic formation mechanism suggests that many types of HEA nanocatalysts should be accessible with scalable solvothermal reactions.
doi_str_mv 10.1002/anie.202009002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2436394712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2436394712</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4932-4f109496ba17acaeb928aecc9f14f46da3a7e7491242323b52e6e8d8275111343</originalsourceid><addsrcrecordid>eNqF0D9LAzEYBvAgCtbq6nzg4nI1_y65DA5Haa1Q6qJzSNOcpqSXM7lDbvMj-Bn9JKZUFFyc8gZ-z8vLA8AlghMEIb5RjTUTDDGEIn2PwAgVGOWEc3KcZkpIzssCnYKzGLcJlCVkI3Bb9Z3XqlNu6KzO5j7sVGd9k_k6W9jnl8_3j1nTBd8OWeWcH7KVanyrQsLOxHNwUisXzcX3OwZP89njdJEvH-7up9Uy11QQnNMaQUEFWyvElVZmLXCpjNaiRrSmbKOI4oZTgTDFBJN1gQ0z5abEvEAIEUrG4Pqwtw3-tTexkzsbtXFONcb3UWJKGBGUI5zo1R-69X1o0nVJMcIY4UwkNTkoHXyMwdSyDXanwiARlPs25b5N-dNmCohD4M06M_yjZbW6n_1mvwBu-3gx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2463663769</pqid></control><display><type>article</type><title>Autocatalytic Formation of High‐Entropy Alloy Nanoparticles</title><source>Wiley Online Library All Journals</source><creator>Broge, Nils L. N. ; Bondesgaard, Martin ; Søndergaard‐Pedersen, Frederik ; Roelsgaard, Martin ; Iversen, Bo Brummerstedt</creator><creatorcontrib>Broge, Nils L. N. ; Bondesgaard, Martin ; Søndergaard‐Pedersen, Frederik ; Roelsgaard, Martin ; Iversen, Bo Brummerstedt</creatorcontrib><description>High‐entropy alloy (HEA) nanoparticles hold great promise as tunable catalysts. Despite the fact that alloy formation is typically difficult in oxygen‐rich environments, we found that Pt‐Ir‐Pd‐Rh‐Ru nanoparticles can be synthesized under benign low‐temperature solvothermal conditions. In situ X‐ray scattering and transmission electron microscopy reveal the solvothermal formation mechanism of Pt‐Ir‐Pd‐Rh‐Ru nanoparticles. For the individual metal acetylacetonate precursors, formation of single metal nanoparticles takes place at temperatures spanning from ca. 150 °C for Pd to ca. 350 °C for Ir. However, for the mixture, homogenous Pt‐Ir‐Pd‐Rh‐Ru HEA nanoparticles can be obtained around 200 °C due to autocatalyzed metal reduction at the (111) facets of the forming crystallites. The autocatalytic formation mechanism suggests that many types of HEA nanocatalysts should accessible with scalable solvothermal reactions, thereby providing broad availability and tunability. High‐entropy alloy (HEA) nanoparticles hold great promise as tunable catalysts, and surprisingly, Pt‐Ir‐Pd‐Rh‐Ru nanoparticles can be synthesized under benign low‐temperature solvothermal conditions. In situ X‐ray scattering and TEM reveal the solvothermal formation mechanism of Pt‐Ir‐Pd‐Rh‐Ru nanoparticles. The autocatalytic formation mechanism suggests that many types of HEA nanocatalysts should be accessible with scalable solvothermal reactions.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202009002</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>alloys ; autocatalysis ; Catalysts ; Crystallites ; Crystals ; Entropy ; Entropy of formation ; High entropy alloys ; Iridium ; Nanoalloys ; nanocatalysts ; Nanoparticles ; Palladium ; Platinum ; Reduction (metal working) ; Rhodium ; Ruthenium ; Transmission electron microscopy ; X-ray scattering</subject><ispartof>Angewandte Chemie International Edition, 2020-12, Vol.59 (49), p.21920-21924</ispartof><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4932-4f109496ba17acaeb928aecc9f14f46da3a7e7491242323b52e6e8d8275111343</citedby><cites>FETCH-LOGICAL-c4932-4f109496ba17acaeb928aecc9f14f46da3a7e7491242323b52e6e8d8275111343</cites><orcidid>0000-0001-6283-5634 ; 0000-0002-4632-1024</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202009002$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202009002$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Broge, Nils L. N.</creatorcontrib><creatorcontrib>Bondesgaard, Martin</creatorcontrib><creatorcontrib>Søndergaard‐Pedersen, Frederik</creatorcontrib><creatorcontrib>Roelsgaard, Martin</creatorcontrib><creatorcontrib>Iversen, Bo Brummerstedt</creatorcontrib><title>Autocatalytic Formation of High‐Entropy Alloy Nanoparticles</title><title>Angewandte Chemie International Edition</title><description>High‐entropy alloy (HEA) nanoparticles hold great promise as tunable catalysts. Despite the fact that alloy formation is typically difficult in oxygen‐rich environments, we found that Pt‐Ir‐Pd‐Rh‐Ru nanoparticles can be synthesized under benign low‐temperature solvothermal conditions. In situ X‐ray scattering and transmission electron microscopy reveal the solvothermal formation mechanism of Pt‐Ir‐Pd‐Rh‐Ru nanoparticles. For the individual metal acetylacetonate precursors, formation of single metal nanoparticles takes place at temperatures spanning from ca. 150 °C for Pd to ca. 350 °C for Ir. However, for the mixture, homogenous Pt‐Ir‐Pd‐Rh‐Ru HEA nanoparticles can be obtained around 200 °C due to autocatalyzed metal reduction at the (111) facets of the forming crystallites. The autocatalytic formation mechanism suggests that many types of HEA nanocatalysts should accessible with scalable solvothermal reactions, thereby providing broad availability and tunability. High‐entropy alloy (HEA) nanoparticles hold great promise as tunable catalysts, and surprisingly, Pt‐Ir‐Pd‐Rh‐Ru nanoparticles can be synthesized under benign low‐temperature solvothermal conditions. In situ X‐ray scattering and TEM reveal the solvothermal formation mechanism of Pt‐Ir‐Pd‐Rh‐Ru nanoparticles. The autocatalytic formation mechanism suggests that many types of HEA nanocatalysts should be accessible with scalable solvothermal reactions.</description><subject>alloys</subject><subject>autocatalysis</subject><subject>Catalysts</subject><subject>Crystallites</subject><subject>Crystals</subject><subject>Entropy</subject><subject>Entropy of formation</subject><subject>High entropy alloys</subject><subject>Iridium</subject><subject>Nanoalloys</subject><subject>nanocatalysts</subject><subject>Nanoparticles</subject><subject>Palladium</subject><subject>Platinum</subject><subject>Reduction (metal working)</subject><subject>Rhodium</subject><subject>Ruthenium</subject><subject>Transmission electron microscopy</subject><subject>X-ray scattering</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqF0D9LAzEYBvAgCtbq6nzg4nI1_y65DA5Haa1Q6qJzSNOcpqSXM7lDbvMj-Bn9JKZUFFyc8gZ-z8vLA8AlghMEIb5RjTUTDDGEIn2PwAgVGOWEc3KcZkpIzssCnYKzGLcJlCVkI3Bb9Z3XqlNu6KzO5j7sVGd9k_k6W9jnl8_3j1nTBd8OWeWcH7KVanyrQsLOxHNwUisXzcX3OwZP89njdJEvH-7up9Uy11QQnNMaQUEFWyvElVZmLXCpjNaiRrSmbKOI4oZTgTDFBJN1gQ0z5abEvEAIEUrG4Pqwtw3-tTexkzsbtXFONcb3UWJKGBGUI5zo1R-69X1o0nVJMcIY4UwkNTkoHXyMwdSyDXanwiARlPs25b5N-dNmCohD4M06M_yjZbW6n_1mvwBu-3gx</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Broge, Nils L. N.</creator><creator>Bondesgaard, Martin</creator><creator>Søndergaard‐Pedersen, Frederik</creator><creator>Roelsgaard, Martin</creator><creator>Iversen, Bo Brummerstedt</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6283-5634</orcidid><orcidid>https://orcid.org/0000-0002-4632-1024</orcidid></search><sort><creationdate>20201201</creationdate><title>Autocatalytic Formation of High‐Entropy Alloy Nanoparticles</title><author>Broge, Nils L. N. ; Bondesgaard, Martin ; Søndergaard‐Pedersen, Frederik ; Roelsgaard, Martin ; Iversen, Bo Brummerstedt</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4932-4f109496ba17acaeb928aecc9f14f46da3a7e7491242323b52e6e8d8275111343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>alloys</topic><topic>autocatalysis</topic><topic>Catalysts</topic><topic>Crystallites</topic><topic>Crystals</topic><topic>Entropy</topic><topic>Entropy of formation</topic><topic>High entropy alloys</topic><topic>Iridium</topic><topic>Nanoalloys</topic><topic>nanocatalysts</topic><topic>Nanoparticles</topic><topic>Palladium</topic><topic>Platinum</topic><topic>Reduction (metal working)</topic><topic>Rhodium</topic><topic>Ruthenium</topic><topic>Transmission electron microscopy</topic><topic>X-ray scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Broge, Nils L. N.</creatorcontrib><creatorcontrib>Bondesgaard, Martin</creatorcontrib><creatorcontrib>Søndergaard‐Pedersen, Frederik</creatorcontrib><creatorcontrib>Roelsgaard, Martin</creatorcontrib><creatorcontrib>Iversen, Bo Brummerstedt</creatorcontrib><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Broge, Nils L. N.</au><au>Bondesgaard, Martin</au><au>Søndergaard‐Pedersen, Frederik</au><au>Roelsgaard, Martin</au><au>Iversen, Bo Brummerstedt</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Autocatalytic Formation of High‐Entropy Alloy Nanoparticles</atitle><jtitle>Angewandte Chemie International Edition</jtitle><date>2020-12-01</date><risdate>2020</risdate><volume>59</volume><issue>49</issue><spage>21920</spage><epage>21924</epage><pages>21920-21924</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>High‐entropy alloy (HEA) nanoparticles hold great promise as tunable catalysts. Despite the fact that alloy formation is typically difficult in oxygen‐rich environments, we found that Pt‐Ir‐Pd‐Rh‐Ru nanoparticles can be synthesized under benign low‐temperature solvothermal conditions. In situ X‐ray scattering and transmission electron microscopy reveal the solvothermal formation mechanism of Pt‐Ir‐Pd‐Rh‐Ru nanoparticles. For the individual metal acetylacetonate precursors, formation of single metal nanoparticles takes place at temperatures spanning from ca. 150 °C for Pd to ca. 350 °C for Ir. However, for the mixture, homogenous Pt‐Ir‐Pd‐Rh‐Ru HEA nanoparticles can be obtained around 200 °C due to autocatalyzed metal reduction at the (111) facets of the forming crystallites. The autocatalytic formation mechanism suggests that many types of HEA nanocatalysts should accessible with scalable solvothermal reactions, thereby providing broad availability and tunability. High‐entropy alloy (HEA) nanoparticles hold great promise as tunable catalysts, and surprisingly, Pt‐Ir‐Pd‐Rh‐Ru nanoparticles can be synthesized under benign low‐temperature solvothermal conditions. In situ X‐ray scattering and TEM reveal the solvothermal formation mechanism of Pt‐Ir‐Pd‐Rh‐Ru nanoparticles. The autocatalytic formation mechanism suggests that many types of HEA nanocatalysts should be accessible with scalable solvothermal reactions.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/anie.202009002</doi><tpages>5</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0001-6283-5634</orcidid><orcidid>https://orcid.org/0000-0002-4632-1024</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2020-12, Vol.59 (49), p.21920-21924
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_2436394712
source Wiley Online Library All Journals
subjects alloys
autocatalysis
Catalysts
Crystallites
Crystals
Entropy
Entropy of formation
High entropy alloys
Iridium
Nanoalloys
nanocatalysts
Nanoparticles
Palladium
Platinum
Reduction (metal working)
Rhodium
Ruthenium
Transmission electron microscopy
X-ray scattering
title Autocatalytic Formation of High‐Entropy Alloy Nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T06%3A30%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Autocatalytic%20Formation%20of%20High%E2%80%90Entropy%20Alloy%20Nanoparticles&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Broge,%20Nils%20L.%20N.&rft.date=2020-12-01&rft.volume=59&rft.issue=49&rft.spage=21920&rft.epage=21924&rft.pages=21920-21924&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202009002&rft_dat=%3Cproquest_cross%3E2436394712%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2463663769&rft_id=info:pmid/&rfr_iscdi=true