Bone marrow coagulated and low‐level laser therapy accelerate bone healing by enhancing angiogenesis, cell proliferation, osteoblast differentiation, and mineralization
The present study evaluated bone marrow aspirate (BMA) and low‐level laser therapy (LLLT) on bone healing. It was created critical‐size defects (CSD) of 5 mm diameter in rat calvaria of 64 rats. Animals were randomly divided into four groups: Control (blood clot), BMA (coagulated BMA), LLLT (laser i...
Gespeichert in:
Veröffentlicht in: | Journal of biomedical materials research. Part A 2021-06, Vol.109 (6), p.849-858 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 858 |
---|---|
container_issue | 6 |
container_start_page | 849 |
container_title | Journal of biomedical materials research. Part A |
container_volume | 109 |
creator | Santinoni, Carolina S. Neves, Adrieli P. C. Almeida, Breno F. M. Kajimoto, Natália C. Pola, Natália M. Caliente, Eliana A. Belem, Eduarda L. G. Lelis, Joilson B. Fucini, Stephen E. Messora, Michel R. Garcia, Valdir G. Bomfim, Suely R. M. Ervolino, Edilson Nagata, Maria J. H. |
description | The present study evaluated bone marrow aspirate (BMA) and low‐level laser therapy (LLLT) on bone healing. It was created critical‐size defects (CSD) of 5 mm diameter in rat calvaria of 64 rats. Animals were randomly divided into four groups: Control (blood clot), BMA (coagulated BMA), LLLT (laser irradiation and blood clot), and BMA/LLLT (laser irradiation and coagulated BMA). Euthanasia was performed at 15 or 30 days postoperative. Immunohistochemical reactions were performed to identify vascular endothelial growth factor (VEGF), proliferating cell nuclear antigen (PCNA), runt‐related transcription factor‐2 (Runx2), bone morphogenetic protein‐2 (BMP‐2), osteocalcin (OCN), and osteopontin (OPN). The markers were quantified, and data were statistically analyzed. Groups BMA/LLLT and LLLT presented significantly higher VEGF expression than group control. Group BMA/LLLT presented a significantly higher expression of PCNA than all experimental groups. Groups BMA and BMA/LLLT presented significantly higher expression of BMP‐2 than all experimental groups. Groups LLLT and BMA/LLLT presented significantly higher expression of OPN than groups control and BMA. Groups LLLT, BMA, and BMA/LLLT presented a significantly higher expression of OCN than group control. It can be concluded that the association of BMA and LLLT enhanced bone healing by improving expression of VEGF, PCNA, Runx2, BMP‐2, OPN, and OCN. |
doi_str_mv | 10.1002/jbm.a.37076 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2435756876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2435756876</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3976-bb5b262b430681631b68e4dc6a9abb8c0a78edff93f70ebaa51a20f64dc0f46b3</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhS1ERX9gxR5ZYoPUZnCc2EmWbVV-qiI2sLauk5sZjxx7sJOOhlUfgefgsXgSnM7AggUrX19_5-jIh5CXOVvkjPG3az0sYFFUrJJPyEkuBM_KRoqn81w2WcEbeUxOY1wnWDLBn5Hjgte5kKI6IT-vvEM6QAh-S1sPy8nCiB0F11Hrt78efli8R0stRAx0XGGAzY5C26JN44hUz_oVgjVuSfWOoluBa-cLuKXxS3QYTbygSWDpJnhr-llovLugPo7odbIeaWf6tEc3msPbHGAwLrHWfH_cPSdHPdiILw7nGfn67ubL9Yfs7vP7j9eXd1lbNJXMtBaaS67Lgsk6l0WuZY1l10poQOu6ZVDV2PV9U_QVQw0gcuCslwlhfSl1cUbe7H1T2m8TxlENJs7xwaGfouJlISoh60om9PU_6NpPwaV0igvWcJ43ok7U-Z5qg48xYK82waQv36mcqblClSpUoB4rTPSrg-ekB-z-sn86SwDfA1tjcfc_L3V79ely7_obReKsjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509221958</pqid></control><display><type>article</type><title>Bone marrow coagulated and low‐level laser therapy accelerate bone healing by enhancing angiogenesis, cell proliferation, osteoblast differentiation, and mineralization</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Santinoni, Carolina S. ; Neves, Adrieli P. C. ; Almeida, Breno F. M. ; Kajimoto, Natália C. ; Pola, Natália M. ; Caliente, Eliana A. ; Belem, Eduarda L. G. ; Lelis, Joilson B. ; Fucini, Stephen E. ; Messora, Michel R. ; Garcia, Valdir G. ; Bomfim, Suely R. M. ; Ervolino, Edilson ; Nagata, Maria J. H.</creator><creatorcontrib>Santinoni, Carolina S. ; Neves, Adrieli P. C. ; Almeida, Breno F. M. ; Kajimoto, Natália C. ; Pola, Natália M. ; Caliente, Eliana A. ; Belem, Eduarda L. G. ; Lelis, Joilson B. ; Fucini, Stephen E. ; Messora, Michel R. ; Garcia, Valdir G. ; Bomfim, Suely R. M. ; Ervolino, Edilson ; Nagata, Maria J. H.</creatorcontrib><description>The present study evaluated bone marrow aspirate (BMA) and low‐level laser therapy (LLLT) on bone healing. It was created critical‐size defects (CSD) of 5 mm diameter in rat calvaria of 64 rats. Animals were randomly divided into four groups: Control (blood clot), BMA (coagulated BMA), LLLT (laser irradiation and blood clot), and BMA/LLLT (laser irradiation and coagulated BMA). Euthanasia was performed at 15 or 30 days postoperative. Immunohistochemical reactions were performed to identify vascular endothelial growth factor (VEGF), proliferating cell nuclear antigen (PCNA), runt‐related transcription factor‐2 (Runx2), bone morphogenetic protein‐2 (BMP‐2), osteocalcin (OCN), and osteopontin (OPN). The markers were quantified, and data were statistically analyzed. Groups BMA/LLLT and LLLT presented significantly higher VEGF expression than group control. Group BMA/LLLT presented a significantly higher expression of PCNA than all experimental groups. Groups BMA and BMA/LLLT presented significantly higher expression of BMP‐2 than all experimental groups. Groups LLLT and BMA/LLLT presented significantly higher expression of OPN than groups control and BMA. Groups LLLT, BMA, and BMA/LLLT presented a significantly higher expression of OCN than group control. It can be concluded that the association of BMA and LLLT enhanced bone healing by improving expression of VEGF, PCNA, Runx2, BMP‐2, OPN, and OCN.</description><identifier>ISSN: 1549-3296</identifier><identifier>EISSN: 1552-4965</identifier><identifier>DOI: 10.1002/jbm.a.37076</identifier><identifier>PMID: 32815657</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Angiogenesis ; Animals ; Antigens ; Biomarkers - analysis ; Biomedical materials ; Blood ; Blood clots ; Blood Coagulation ; Bone healing ; Bone Marrow ; Bone morphogenetic proteins ; bone regeneration ; Bone Regeneration - drug effects ; Bone Regeneration - radiation effects ; Calcification, Physiologic - drug effects ; Calcification, Physiologic - radiation effects ; Calvaria ; Cbfa-1 protein ; Cell differentiation ; Cell Differentiation - drug effects ; Cell proliferation ; Cell Proliferation - drug effects ; Cell Proliferation - radiation effects ; Euthanasia ; Fracture Healing ; Growth factors ; Healing ; immunohistochemistry ; Irradiation ; Laser Therapy - methods ; Lasers ; low‐level laser therapy ; Male ; Mesenchymal stem cells ; Mineralization ; Neovascularization, Physiologic - drug effects ; Neovascularization, Physiologic - radiation effects ; Osteoblastogenesis ; Osteoblasts - drug effects ; Osteoblasts - radiation effects ; Osteocalcin ; Osteopontin ; Proliferating cell nuclear antigen ; Rats ; Rats, Wistar ; Vascular endothelial growth factor</subject><ispartof>Journal of biomedical materials research. Part A, 2021-06, Vol.109 (6), p.849-858</ispartof><rights>2020 Wiley Periodicals LLC.</rights><rights>2021 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3976-bb5b262b430681631b68e4dc6a9abb8c0a78edff93f70ebaa51a20f64dc0f46b3</citedby><cites>FETCH-LOGICAL-c3976-bb5b262b430681631b68e4dc6a9abb8c0a78edff93f70ebaa51a20f64dc0f46b3</cites><orcidid>0000-0001-5153-2419</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.a.37076$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.a.37076$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32815657$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Santinoni, Carolina S.</creatorcontrib><creatorcontrib>Neves, Adrieli P. C.</creatorcontrib><creatorcontrib>Almeida, Breno F. M.</creatorcontrib><creatorcontrib>Kajimoto, Natália C.</creatorcontrib><creatorcontrib>Pola, Natália M.</creatorcontrib><creatorcontrib>Caliente, Eliana A.</creatorcontrib><creatorcontrib>Belem, Eduarda L. G.</creatorcontrib><creatorcontrib>Lelis, Joilson B.</creatorcontrib><creatorcontrib>Fucini, Stephen E.</creatorcontrib><creatorcontrib>Messora, Michel R.</creatorcontrib><creatorcontrib>Garcia, Valdir G.</creatorcontrib><creatorcontrib>Bomfim, Suely R. M.</creatorcontrib><creatorcontrib>Ervolino, Edilson</creatorcontrib><creatorcontrib>Nagata, Maria J. H.</creatorcontrib><title>Bone marrow coagulated and low‐level laser therapy accelerate bone healing by enhancing angiogenesis, cell proliferation, osteoblast differentiation, and mineralization</title><title>Journal of biomedical materials research. Part A</title><addtitle>J Biomed Mater Res A</addtitle><description>The present study evaluated bone marrow aspirate (BMA) and low‐level laser therapy (LLLT) on bone healing. It was created critical‐size defects (CSD) of 5 mm diameter in rat calvaria of 64 rats. Animals were randomly divided into four groups: Control (blood clot), BMA (coagulated BMA), LLLT (laser irradiation and blood clot), and BMA/LLLT (laser irradiation and coagulated BMA). Euthanasia was performed at 15 or 30 days postoperative. Immunohistochemical reactions were performed to identify vascular endothelial growth factor (VEGF), proliferating cell nuclear antigen (PCNA), runt‐related transcription factor‐2 (Runx2), bone morphogenetic protein‐2 (BMP‐2), osteocalcin (OCN), and osteopontin (OPN). The markers were quantified, and data were statistically analyzed. Groups BMA/LLLT and LLLT presented significantly higher VEGF expression than group control. Group BMA/LLLT presented a significantly higher expression of PCNA than all experimental groups. Groups BMA and BMA/LLLT presented significantly higher expression of BMP‐2 than all experimental groups. Groups LLLT and BMA/LLLT presented significantly higher expression of OPN than groups control and BMA. Groups LLLT, BMA, and BMA/LLLT presented a significantly higher expression of OCN than group control. It can be concluded that the association of BMA and LLLT enhanced bone healing by improving expression of VEGF, PCNA, Runx2, BMP‐2, OPN, and OCN.</description><subject>Angiogenesis</subject><subject>Animals</subject><subject>Antigens</subject><subject>Biomarkers - analysis</subject><subject>Biomedical materials</subject><subject>Blood</subject><subject>Blood clots</subject><subject>Blood Coagulation</subject><subject>Bone healing</subject><subject>Bone Marrow</subject><subject>Bone morphogenetic proteins</subject><subject>bone regeneration</subject><subject>Bone Regeneration - drug effects</subject><subject>Bone Regeneration - radiation effects</subject><subject>Calcification, Physiologic - drug effects</subject><subject>Calcification, Physiologic - radiation effects</subject><subject>Calvaria</subject><subject>Cbfa-1 protein</subject><subject>Cell differentiation</subject><subject>Cell Differentiation - drug effects</subject><subject>Cell proliferation</subject><subject>Cell Proliferation - drug effects</subject><subject>Cell Proliferation - radiation effects</subject><subject>Euthanasia</subject><subject>Fracture Healing</subject><subject>Growth factors</subject><subject>Healing</subject><subject>immunohistochemistry</subject><subject>Irradiation</subject><subject>Laser Therapy - methods</subject><subject>Lasers</subject><subject>low‐level laser therapy</subject><subject>Male</subject><subject>Mesenchymal stem cells</subject><subject>Mineralization</subject><subject>Neovascularization, Physiologic - drug effects</subject><subject>Neovascularization, Physiologic - radiation effects</subject><subject>Osteoblastogenesis</subject><subject>Osteoblasts - drug effects</subject><subject>Osteoblasts - radiation effects</subject><subject>Osteocalcin</subject><subject>Osteopontin</subject><subject>Proliferating cell nuclear antigen</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Vascular endothelial growth factor</subject><issn>1549-3296</issn><issn>1552-4965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1u1DAUhS1ERX9gxR5ZYoPUZnCc2EmWbVV-qiI2sLauk5sZjxx7sJOOhlUfgefgsXgSnM7AggUrX19_5-jIh5CXOVvkjPG3az0sYFFUrJJPyEkuBM_KRoqn81w2WcEbeUxOY1wnWDLBn5Hjgte5kKI6IT-vvEM6QAh-S1sPy8nCiB0F11Hrt78efli8R0stRAx0XGGAzY5C26JN44hUz_oVgjVuSfWOoluBa-cLuKXxS3QYTbygSWDpJnhr-llovLugPo7odbIeaWf6tEc3msPbHGAwLrHWfH_cPSdHPdiILw7nGfn67ubL9Yfs7vP7j9eXd1lbNJXMtBaaS67Lgsk6l0WuZY1l10poQOu6ZVDV2PV9U_QVQw0gcuCslwlhfSl1cUbe7H1T2m8TxlENJs7xwaGfouJlISoh60om9PU_6NpPwaV0igvWcJ43ok7U-Z5qg48xYK82waQv36mcqblClSpUoB4rTPSrg-ekB-z-sn86SwDfA1tjcfc_L3V79ely7_obReKsjw</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>Santinoni, Carolina S.</creator><creator>Neves, Adrieli P. C.</creator><creator>Almeida, Breno F. M.</creator><creator>Kajimoto, Natália C.</creator><creator>Pola, Natália M.</creator><creator>Caliente, Eliana A.</creator><creator>Belem, Eduarda L. G.</creator><creator>Lelis, Joilson B.</creator><creator>Fucini, Stephen E.</creator><creator>Messora, Michel R.</creator><creator>Garcia, Valdir G.</creator><creator>Bomfim, Suely R. M.</creator><creator>Ervolino, Edilson</creator><creator>Nagata, Maria J. H.</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5153-2419</orcidid></search><sort><creationdate>202106</creationdate><title>Bone marrow coagulated and low‐level laser therapy accelerate bone healing by enhancing angiogenesis, cell proliferation, osteoblast differentiation, and mineralization</title><author>Santinoni, Carolina S. ; Neves, Adrieli P. C. ; Almeida, Breno F. M. ; Kajimoto, Natália C. ; Pola, Natália M. ; Caliente, Eliana A. ; Belem, Eduarda L. G. ; Lelis, Joilson B. ; Fucini, Stephen E. ; Messora, Michel R. ; Garcia, Valdir G. ; Bomfim, Suely R. M. ; Ervolino, Edilson ; Nagata, Maria J. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3976-bb5b262b430681631b68e4dc6a9abb8c0a78edff93f70ebaa51a20f64dc0f46b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Angiogenesis</topic><topic>Animals</topic><topic>Antigens</topic><topic>Biomarkers - analysis</topic><topic>Biomedical materials</topic><topic>Blood</topic><topic>Blood clots</topic><topic>Blood Coagulation</topic><topic>Bone healing</topic><topic>Bone Marrow</topic><topic>Bone morphogenetic proteins</topic><topic>bone regeneration</topic><topic>Bone Regeneration - drug effects</topic><topic>Bone Regeneration - radiation effects</topic><topic>Calcification, Physiologic - drug effects</topic><topic>Calcification, Physiologic - radiation effects</topic><topic>Calvaria</topic><topic>Cbfa-1 protein</topic><topic>Cell differentiation</topic><topic>Cell Differentiation - drug effects</topic><topic>Cell proliferation</topic><topic>Cell Proliferation - drug effects</topic><topic>Cell Proliferation - radiation effects</topic><topic>Euthanasia</topic><topic>Fracture Healing</topic><topic>Growth factors</topic><topic>Healing</topic><topic>immunohistochemistry</topic><topic>Irradiation</topic><topic>Laser Therapy - methods</topic><topic>Lasers</topic><topic>low‐level laser therapy</topic><topic>Male</topic><topic>Mesenchymal stem cells</topic><topic>Mineralization</topic><topic>Neovascularization, Physiologic - drug effects</topic><topic>Neovascularization, Physiologic - radiation effects</topic><topic>Osteoblastogenesis</topic><topic>Osteoblasts - drug effects</topic><topic>Osteoblasts - radiation effects</topic><topic>Osteocalcin</topic><topic>Osteopontin</topic><topic>Proliferating cell nuclear antigen</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Vascular endothelial growth factor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santinoni, Carolina S.</creatorcontrib><creatorcontrib>Neves, Adrieli P. C.</creatorcontrib><creatorcontrib>Almeida, Breno F. M.</creatorcontrib><creatorcontrib>Kajimoto, Natália C.</creatorcontrib><creatorcontrib>Pola, Natália M.</creatorcontrib><creatorcontrib>Caliente, Eliana A.</creatorcontrib><creatorcontrib>Belem, Eduarda L. G.</creatorcontrib><creatorcontrib>Lelis, Joilson B.</creatorcontrib><creatorcontrib>Fucini, Stephen E.</creatorcontrib><creatorcontrib>Messora, Michel R.</creatorcontrib><creatorcontrib>Garcia, Valdir G.</creatorcontrib><creatorcontrib>Bomfim, Suely R. M.</creatorcontrib><creatorcontrib>Ervolino, Edilson</creatorcontrib><creatorcontrib>Nagata, Maria J. H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santinoni, Carolina S.</au><au>Neves, Adrieli P. C.</au><au>Almeida, Breno F. M.</au><au>Kajimoto, Natália C.</au><au>Pola, Natália M.</au><au>Caliente, Eliana A.</au><au>Belem, Eduarda L. G.</au><au>Lelis, Joilson B.</au><au>Fucini, Stephen E.</au><au>Messora, Michel R.</au><au>Garcia, Valdir G.</au><au>Bomfim, Suely R. M.</au><au>Ervolino, Edilson</au><au>Nagata, Maria J. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bone marrow coagulated and low‐level laser therapy accelerate bone healing by enhancing angiogenesis, cell proliferation, osteoblast differentiation, and mineralization</atitle><jtitle>Journal of biomedical materials research. Part A</jtitle><addtitle>J Biomed Mater Res A</addtitle><date>2021-06</date><risdate>2021</risdate><volume>109</volume><issue>6</issue><spage>849</spage><epage>858</epage><pages>849-858</pages><issn>1549-3296</issn><eissn>1552-4965</eissn><abstract>The present study evaluated bone marrow aspirate (BMA) and low‐level laser therapy (LLLT) on bone healing. It was created critical‐size defects (CSD) of 5 mm diameter in rat calvaria of 64 rats. Animals were randomly divided into four groups: Control (blood clot), BMA (coagulated BMA), LLLT (laser irradiation and blood clot), and BMA/LLLT (laser irradiation and coagulated BMA). Euthanasia was performed at 15 or 30 days postoperative. Immunohistochemical reactions were performed to identify vascular endothelial growth factor (VEGF), proliferating cell nuclear antigen (PCNA), runt‐related transcription factor‐2 (Runx2), bone morphogenetic protein‐2 (BMP‐2), osteocalcin (OCN), and osteopontin (OPN). The markers were quantified, and data were statistically analyzed. Groups BMA/LLLT and LLLT presented significantly higher VEGF expression than group control. Group BMA/LLLT presented a significantly higher expression of PCNA than all experimental groups. Groups BMA and BMA/LLLT presented significantly higher expression of BMP‐2 than all experimental groups. Groups LLLT and BMA/LLLT presented significantly higher expression of OPN than groups control and BMA. Groups LLLT, BMA, and BMA/LLLT presented a significantly higher expression of OCN than group control. It can be concluded that the association of BMA and LLLT enhanced bone healing by improving expression of VEGF, PCNA, Runx2, BMP‐2, OPN, and OCN.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>32815657</pmid><doi>10.1002/jbm.a.37076</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5153-2419</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-3296 |
ispartof | Journal of biomedical materials research. Part A, 2021-06, Vol.109 (6), p.849-858 |
issn | 1549-3296 1552-4965 |
language | eng |
recordid | cdi_proquest_miscellaneous_2435756876 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | Angiogenesis Animals Antigens Biomarkers - analysis Biomedical materials Blood Blood clots Blood Coagulation Bone healing Bone Marrow Bone morphogenetic proteins bone regeneration Bone Regeneration - drug effects Bone Regeneration - radiation effects Calcification, Physiologic - drug effects Calcification, Physiologic - radiation effects Calvaria Cbfa-1 protein Cell differentiation Cell Differentiation - drug effects Cell proliferation Cell Proliferation - drug effects Cell Proliferation - radiation effects Euthanasia Fracture Healing Growth factors Healing immunohistochemistry Irradiation Laser Therapy - methods Lasers low‐level laser therapy Male Mesenchymal stem cells Mineralization Neovascularization, Physiologic - drug effects Neovascularization, Physiologic - radiation effects Osteoblastogenesis Osteoblasts - drug effects Osteoblasts - radiation effects Osteocalcin Osteopontin Proliferating cell nuclear antigen Rats Rats, Wistar Vascular endothelial growth factor |
title | Bone marrow coagulated and low‐level laser therapy accelerate bone healing by enhancing angiogenesis, cell proliferation, osteoblast differentiation, and mineralization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A34%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bone%20marrow%20coagulated%20and%20low%E2%80%90level%20laser%20therapy%20accelerate%20bone%20healing%20by%20enhancing%20angiogenesis,%20cell%20proliferation,%20osteoblast%20differentiation,%20and%20mineralization&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20A&rft.au=Santinoni,%20Carolina%20S.&rft.date=2021-06&rft.volume=109&rft.issue=6&rft.spage=849&rft.epage=858&rft.pages=849-858&rft.issn=1549-3296&rft.eissn=1552-4965&rft_id=info:doi/10.1002/jbm.a.37076&rft_dat=%3Cproquest_cross%3E2435756876%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509221958&rft_id=info:pmid/32815657&rfr_iscdi=true |