Bone marrow coagulated and low‐level laser therapy accelerate bone healing by enhancing angiogenesis, cell proliferation, osteoblast differentiation, and mineralization

The present study evaluated bone marrow aspirate (BMA) and low‐level laser therapy (LLLT) on bone healing. It was created critical‐size defects (CSD) of 5 mm diameter in rat calvaria of 64 rats. Animals were randomly divided into four groups: Control (blood clot), BMA (coagulated BMA), LLLT (laser i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research. Part A 2021-06, Vol.109 (6), p.849-858
Hauptverfasser: Santinoni, Carolina S., Neves, Adrieli P. C., Almeida, Breno F. M., Kajimoto, Natália C., Pola, Natália M., Caliente, Eliana A., Belem, Eduarda L. G., Lelis, Joilson B., Fucini, Stephen E., Messora, Michel R., Garcia, Valdir G., Bomfim, Suely R. M., Ervolino, Edilson, Nagata, Maria J. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 858
container_issue 6
container_start_page 849
container_title Journal of biomedical materials research. Part A
container_volume 109
creator Santinoni, Carolina S.
Neves, Adrieli P. C.
Almeida, Breno F. M.
Kajimoto, Natália C.
Pola, Natália M.
Caliente, Eliana A.
Belem, Eduarda L. G.
Lelis, Joilson B.
Fucini, Stephen E.
Messora, Michel R.
Garcia, Valdir G.
Bomfim, Suely R. M.
Ervolino, Edilson
Nagata, Maria J. H.
description The present study evaluated bone marrow aspirate (BMA) and low‐level laser therapy (LLLT) on bone healing. It was created critical‐size defects (CSD) of 5 mm diameter in rat calvaria of 64 rats. Animals were randomly divided into four groups: Control (blood clot), BMA (coagulated BMA), LLLT (laser irradiation and blood clot), and BMA/LLLT (laser irradiation and coagulated BMA). Euthanasia was performed at 15 or 30 days postoperative. Immunohistochemical reactions were performed to identify vascular endothelial growth factor (VEGF), proliferating cell nuclear antigen (PCNA), runt‐related transcription factor‐2 (Runx2), bone morphogenetic protein‐2 (BMP‐2), osteocalcin (OCN), and osteopontin (OPN). The markers were quantified, and data were statistically analyzed. Groups BMA/LLLT and LLLT presented significantly higher VEGF expression than group control. Group BMA/LLLT presented a significantly higher expression of PCNA than all experimental groups. Groups BMA and BMA/LLLT presented significantly higher expression of BMP‐2 than all experimental groups. Groups LLLT and BMA/LLLT presented significantly higher expression of OPN than groups control and BMA. Groups LLLT, BMA, and BMA/LLLT presented a significantly higher expression of OCN than group control. It can be concluded that the association of BMA and LLLT enhanced bone healing by improving expression of VEGF, PCNA, Runx2, BMP‐2, OPN, and OCN.
doi_str_mv 10.1002/jbm.a.37076
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2435756876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2435756876</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3976-bb5b262b430681631b68e4dc6a9abb8c0a78edff93f70ebaa51a20f64dc0f46b3</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhS1ERX9gxR5ZYoPUZnCc2EmWbVV-qiI2sLauk5sZjxx7sJOOhlUfgefgsXgSnM7AggUrX19_5-jIh5CXOVvkjPG3az0sYFFUrJJPyEkuBM_KRoqn81w2WcEbeUxOY1wnWDLBn5Hjgte5kKI6IT-vvEM6QAh-S1sPy8nCiB0F11Hrt78efli8R0stRAx0XGGAzY5C26JN44hUz_oVgjVuSfWOoluBa-cLuKXxS3QYTbygSWDpJnhr-llovLugPo7odbIeaWf6tEc3msPbHGAwLrHWfH_cPSdHPdiILw7nGfn67ubL9Yfs7vP7j9eXd1lbNJXMtBaaS67Lgsk6l0WuZY1l10poQOu6ZVDV2PV9U_QVQw0gcuCslwlhfSl1cUbe7H1T2m8TxlENJs7xwaGfouJlISoh60om9PU_6NpPwaV0igvWcJ43ok7U-Z5qg48xYK82waQv36mcqblClSpUoB4rTPSrg-ekB-z-sn86SwDfA1tjcfc_L3V79ely7_obReKsjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509221958</pqid></control><display><type>article</type><title>Bone marrow coagulated and low‐level laser therapy accelerate bone healing by enhancing angiogenesis, cell proliferation, osteoblast differentiation, and mineralization</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Santinoni, Carolina S. ; Neves, Adrieli P. C. ; Almeida, Breno F. M. ; Kajimoto, Natália C. ; Pola, Natália M. ; Caliente, Eliana A. ; Belem, Eduarda L. G. ; Lelis, Joilson B. ; Fucini, Stephen E. ; Messora, Michel R. ; Garcia, Valdir G. ; Bomfim, Suely R. M. ; Ervolino, Edilson ; Nagata, Maria J. H.</creator><creatorcontrib>Santinoni, Carolina S. ; Neves, Adrieli P. C. ; Almeida, Breno F. M. ; Kajimoto, Natália C. ; Pola, Natália M. ; Caliente, Eliana A. ; Belem, Eduarda L. G. ; Lelis, Joilson B. ; Fucini, Stephen E. ; Messora, Michel R. ; Garcia, Valdir G. ; Bomfim, Suely R. M. ; Ervolino, Edilson ; Nagata, Maria J. H.</creatorcontrib><description>The present study evaluated bone marrow aspirate (BMA) and low‐level laser therapy (LLLT) on bone healing. It was created critical‐size defects (CSD) of 5 mm diameter in rat calvaria of 64 rats. Animals were randomly divided into four groups: Control (blood clot), BMA (coagulated BMA), LLLT (laser irradiation and blood clot), and BMA/LLLT (laser irradiation and coagulated BMA). Euthanasia was performed at 15 or 30 days postoperative. Immunohistochemical reactions were performed to identify vascular endothelial growth factor (VEGF), proliferating cell nuclear antigen (PCNA), runt‐related transcription factor‐2 (Runx2), bone morphogenetic protein‐2 (BMP‐2), osteocalcin (OCN), and osteopontin (OPN). The markers were quantified, and data were statistically analyzed. Groups BMA/LLLT and LLLT presented significantly higher VEGF expression than group control. Group BMA/LLLT presented a significantly higher expression of PCNA than all experimental groups. Groups BMA and BMA/LLLT presented significantly higher expression of BMP‐2 than all experimental groups. Groups LLLT and BMA/LLLT presented significantly higher expression of OPN than groups control and BMA. Groups LLLT, BMA, and BMA/LLLT presented a significantly higher expression of OCN than group control. It can be concluded that the association of BMA and LLLT enhanced bone healing by improving expression of VEGF, PCNA, Runx2, BMP‐2, OPN, and OCN.</description><identifier>ISSN: 1549-3296</identifier><identifier>EISSN: 1552-4965</identifier><identifier>DOI: 10.1002/jbm.a.37076</identifier><identifier>PMID: 32815657</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Angiogenesis ; Animals ; Antigens ; Biomarkers - analysis ; Biomedical materials ; Blood ; Blood clots ; Blood Coagulation ; Bone healing ; Bone Marrow ; Bone morphogenetic proteins ; bone regeneration ; Bone Regeneration - drug effects ; Bone Regeneration - radiation effects ; Calcification, Physiologic - drug effects ; Calcification, Physiologic - radiation effects ; Calvaria ; Cbfa-1 protein ; Cell differentiation ; Cell Differentiation - drug effects ; Cell proliferation ; Cell Proliferation - drug effects ; Cell Proliferation - radiation effects ; Euthanasia ; Fracture Healing ; Growth factors ; Healing ; immunohistochemistry ; Irradiation ; Laser Therapy - methods ; Lasers ; low‐level laser therapy ; Male ; Mesenchymal stem cells ; Mineralization ; Neovascularization, Physiologic - drug effects ; Neovascularization, Physiologic - radiation effects ; Osteoblastogenesis ; Osteoblasts - drug effects ; Osteoblasts - radiation effects ; Osteocalcin ; Osteopontin ; Proliferating cell nuclear antigen ; Rats ; Rats, Wistar ; Vascular endothelial growth factor</subject><ispartof>Journal of biomedical materials research. Part A, 2021-06, Vol.109 (6), p.849-858</ispartof><rights>2020 Wiley Periodicals LLC.</rights><rights>2021 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3976-bb5b262b430681631b68e4dc6a9abb8c0a78edff93f70ebaa51a20f64dc0f46b3</citedby><cites>FETCH-LOGICAL-c3976-bb5b262b430681631b68e4dc6a9abb8c0a78edff93f70ebaa51a20f64dc0f46b3</cites><orcidid>0000-0001-5153-2419</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.a.37076$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.a.37076$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32815657$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Santinoni, Carolina S.</creatorcontrib><creatorcontrib>Neves, Adrieli P. C.</creatorcontrib><creatorcontrib>Almeida, Breno F. M.</creatorcontrib><creatorcontrib>Kajimoto, Natália C.</creatorcontrib><creatorcontrib>Pola, Natália M.</creatorcontrib><creatorcontrib>Caliente, Eliana A.</creatorcontrib><creatorcontrib>Belem, Eduarda L. G.</creatorcontrib><creatorcontrib>Lelis, Joilson B.</creatorcontrib><creatorcontrib>Fucini, Stephen E.</creatorcontrib><creatorcontrib>Messora, Michel R.</creatorcontrib><creatorcontrib>Garcia, Valdir G.</creatorcontrib><creatorcontrib>Bomfim, Suely R. M.</creatorcontrib><creatorcontrib>Ervolino, Edilson</creatorcontrib><creatorcontrib>Nagata, Maria J. H.</creatorcontrib><title>Bone marrow coagulated and low‐level laser therapy accelerate bone healing by enhancing angiogenesis, cell proliferation, osteoblast differentiation, and mineralization</title><title>Journal of biomedical materials research. Part A</title><addtitle>J Biomed Mater Res A</addtitle><description>The present study evaluated bone marrow aspirate (BMA) and low‐level laser therapy (LLLT) on bone healing. It was created critical‐size defects (CSD) of 5 mm diameter in rat calvaria of 64 rats. Animals were randomly divided into four groups: Control (blood clot), BMA (coagulated BMA), LLLT (laser irradiation and blood clot), and BMA/LLLT (laser irradiation and coagulated BMA). Euthanasia was performed at 15 or 30 days postoperative. Immunohistochemical reactions were performed to identify vascular endothelial growth factor (VEGF), proliferating cell nuclear antigen (PCNA), runt‐related transcription factor‐2 (Runx2), bone morphogenetic protein‐2 (BMP‐2), osteocalcin (OCN), and osteopontin (OPN). The markers were quantified, and data were statistically analyzed. Groups BMA/LLLT and LLLT presented significantly higher VEGF expression than group control. Group BMA/LLLT presented a significantly higher expression of PCNA than all experimental groups. Groups BMA and BMA/LLLT presented significantly higher expression of BMP‐2 than all experimental groups. Groups LLLT and BMA/LLLT presented significantly higher expression of OPN than groups control and BMA. Groups LLLT, BMA, and BMA/LLLT presented a significantly higher expression of OCN than group control. It can be concluded that the association of BMA and LLLT enhanced bone healing by improving expression of VEGF, PCNA, Runx2, BMP‐2, OPN, and OCN.</description><subject>Angiogenesis</subject><subject>Animals</subject><subject>Antigens</subject><subject>Biomarkers - analysis</subject><subject>Biomedical materials</subject><subject>Blood</subject><subject>Blood clots</subject><subject>Blood Coagulation</subject><subject>Bone healing</subject><subject>Bone Marrow</subject><subject>Bone morphogenetic proteins</subject><subject>bone regeneration</subject><subject>Bone Regeneration - drug effects</subject><subject>Bone Regeneration - radiation effects</subject><subject>Calcification, Physiologic - drug effects</subject><subject>Calcification, Physiologic - radiation effects</subject><subject>Calvaria</subject><subject>Cbfa-1 protein</subject><subject>Cell differentiation</subject><subject>Cell Differentiation - drug effects</subject><subject>Cell proliferation</subject><subject>Cell Proliferation - drug effects</subject><subject>Cell Proliferation - radiation effects</subject><subject>Euthanasia</subject><subject>Fracture Healing</subject><subject>Growth factors</subject><subject>Healing</subject><subject>immunohistochemistry</subject><subject>Irradiation</subject><subject>Laser Therapy - methods</subject><subject>Lasers</subject><subject>low‐level laser therapy</subject><subject>Male</subject><subject>Mesenchymal stem cells</subject><subject>Mineralization</subject><subject>Neovascularization, Physiologic - drug effects</subject><subject>Neovascularization, Physiologic - radiation effects</subject><subject>Osteoblastogenesis</subject><subject>Osteoblasts - drug effects</subject><subject>Osteoblasts - radiation effects</subject><subject>Osteocalcin</subject><subject>Osteopontin</subject><subject>Proliferating cell nuclear antigen</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Vascular endothelial growth factor</subject><issn>1549-3296</issn><issn>1552-4965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1u1DAUhS1ERX9gxR5ZYoPUZnCc2EmWbVV-qiI2sLauk5sZjxx7sJOOhlUfgefgsXgSnM7AggUrX19_5-jIh5CXOVvkjPG3az0sYFFUrJJPyEkuBM_KRoqn81w2WcEbeUxOY1wnWDLBn5Hjgte5kKI6IT-vvEM6QAh-S1sPy8nCiB0F11Hrt78efli8R0stRAx0XGGAzY5C26JN44hUz_oVgjVuSfWOoluBa-cLuKXxS3QYTbygSWDpJnhr-llovLugPo7odbIeaWf6tEc3msPbHGAwLrHWfH_cPSdHPdiILw7nGfn67ubL9Yfs7vP7j9eXd1lbNJXMtBaaS67Lgsk6l0WuZY1l10poQOu6ZVDV2PV9U_QVQw0gcuCslwlhfSl1cUbe7H1T2m8TxlENJs7xwaGfouJlISoh60om9PU_6NpPwaV0igvWcJ43ok7U-Z5qg48xYK82waQv36mcqblClSpUoB4rTPSrg-ekB-z-sn86SwDfA1tjcfc_L3V79ely7_obReKsjw</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>Santinoni, Carolina S.</creator><creator>Neves, Adrieli P. C.</creator><creator>Almeida, Breno F. M.</creator><creator>Kajimoto, Natália C.</creator><creator>Pola, Natália M.</creator><creator>Caliente, Eliana A.</creator><creator>Belem, Eduarda L. G.</creator><creator>Lelis, Joilson B.</creator><creator>Fucini, Stephen E.</creator><creator>Messora, Michel R.</creator><creator>Garcia, Valdir G.</creator><creator>Bomfim, Suely R. M.</creator><creator>Ervolino, Edilson</creator><creator>Nagata, Maria J. H.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5153-2419</orcidid></search><sort><creationdate>202106</creationdate><title>Bone marrow coagulated and low‐level laser therapy accelerate bone healing by enhancing angiogenesis, cell proliferation, osteoblast differentiation, and mineralization</title><author>Santinoni, Carolina S. ; Neves, Adrieli P. C. ; Almeida, Breno F. M. ; Kajimoto, Natália C. ; Pola, Natália M. ; Caliente, Eliana A. ; Belem, Eduarda L. G. ; Lelis, Joilson B. ; Fucini, Stephen E. ; Messora, Michel R. ; Garcia, Valdir G. ; Bomfim, Suely R. M. ; Ervolino, Edilson ; Nagata, Maria J. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3976-bb5b262b430681631b68e4dc6a9abb8c0a78edff93f70ebaa51a20f64dc0f46b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Angiogenesis</topic><topic>Animals</topic><topic>Antigens</topic><topic>Biomarkers - analysis</topic><topic>Biomedical materials</topic><topic>Blood</topic><topic>Blood clots</topic><topic>Blood Coagulation</topic><topic>Bone healing</topic><topic>Bone Marrow</topic><topic>Bone morphogenetic proteins</topic><topic>bone regeneration</topic><topic>Bone Regeneration - drug effects</topic><topic>Bone Regeneration - radiation effects</topic><topic>Calcification, Physiologic - drug effects</topic><topic>Calcification, Physiologic - radiation effects</topic><topic>Calvaria</topic><topic>Cbfa-1 protein</topic><topic>Cell differentiation</topic><topic>Cell Differentiation - drug effects</topic><topic>Cell proliferation</topic><topic>Cell Proliferation - drug effects</topic><topic>Cell Proliferation - radiation effects</topic><topic>Euthanasia</topic><topic>Fracture Healing</topic><topic>Growth factors</topic><topic>Healing</topic><topic>immunohistochemistry</topic><topic>Irradiation</topic><topic>Laser Therapy - methods</topic><topic>Lasers</topic><topic>low‐level laser therapy</topic><topic>Male</topic><topic>Mesenchymal stem cells</topic><topic>Mineralization</topic><topic>Neovascularization, Physiologic - drug effects</topic><topic>Neovascularization, Physiologic - radiation effects</topic><topic>Osteoblastogenesis</topic><topic>Osteoblasts - drug effects</topic><topic>Osteoblasts - radiation effects</topic><topic>Osteocalcin</topic><topic>Osteopontin</topic><topic>Proliferating cell nuclear antigen</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Vascular endothelial growth factor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santinoni, Carolina S.</creatorcontrib><creatorcontrib>Neves, Adrieli P. C.</creatorcontrib><creatorcontrib>Almeida, Breno F. M.</creatorcontrib><creatorcontrib>Kajimoto, Natália C.</creatorcontrib><creatorcontrib>Pola, Natália M.</creatorcontrib><creatorcontrib>Caliente, Eliana A.</creatorcontrib><creatorcontrib>Belem, Eduarda L. G.</creatorcontrib><creatorcontrib>Lelis, Joilson B.</creatorcontrib><creatorcontrib>Fucini, Stephen E.</creatorcontrib><creatorcontrib>Messora, Michel R.</creatorcontrib><creatorcontrib>Garcia, Valdir G.</creatorcontrib><creatorcontrib>Bomfim, Suely R. M.</creatorcontrib><creatorcontrib>Ervolino, Edilson</creatorcontrib><creatorcontrib>Nagata, Maria J. H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santinoni, Carolina S.</au><au>Neves, Adrieli P. C.</au><au>Almeida, Breno F. M.</au><au>Kajimoto, Natália C.</au><au>Pola, Natália M.</au><au>Caliente, Eliana A.</au><au>Belem, Eduarda L. G.</au><au>Lelis, Joilson B.</au><au>Fucini, Stephen E.</au><au>Messora, Michel R.</au><au>Garcia, Valdir G.</au><au>Bomfim, Suely R. M.</au><au>Ervolino, Edilson</au><au>Nagata, Maria J. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bone marrow coagulated and low‐level laser therapy accelerate bone healing by enhancing angiogenesis, cell proliferation, osteoblast differentiation, and mineralization</atitle><jtitle>Journal of biomedical materials research. Part A</jtitle><addtitle>J Biomed Mater Res A</addtitle><date>2021-06</date><risdate>2021</risdate><volume>109</volume><issue>6</issue><spage>849</spage><epage>858</epage><pages>849-858</pages><issn>1549-3296</issn><eissn>1552-4965</eissn><abstract>The present study evaluated bone marrow aspirate (BMA) and low‐level laser therapy (LLLT) on bone healing. It was created critical‐size defects (CSD) of 5 mm diameter in rat calvaria of 64 rats. Animals were randomly divided into four groups: Control (blood clot), BMA (coagulated BMA), LLLT (laser irradiation and blood clot), and BMA/LLLT (laser irradiation and coagulated BMA). Euthanasia was performed at 15 or 30 days postoperative. Immunohistochemical reactions were performed to identify vascular endothelial growth factor (VEGF), proliferating cell nuclear antigen (PCNA), runt‐related transcription factor‐2 (Runx2), bone morphogenetic protein‐2 (BMP‐2), osteocalcin (OCN), and osteopontin (OPN). The markers were quantified, and data were statistically analyzed. Groups BMA/LLLT and LLLT presented significantly higher VEGF expression than group control. Group BMA/LLLT presented a significantly higher expression of PCNA than all experimental groups. Groups BMA and BMA/LLLT presented significantly higher expression of BMP‐2 than all experimental groups. Groups LLLT and BMA/LLLT presented significantly higher expression of OPN than groups control and BMA. Groups LLLT, BMA, and BMA/LLLT presented a significantly higher expression of OCN than group control. It can be concluded that the association of BMA and LLLT enhanced bone healing by improving expression of VEGF, PCNA, Runx2, BMP‐2, OPN, and OCN.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>32815657</pmid><doi>10.1002/jbm.a.37076</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5153-2419</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1549-3296
ispartof Journal of biomedical materials research. Part A, 2021-06, Vol.109 (6), p.849-858
issn 1549-3296
1552-4965
language eng
recordid cdi_proquest_miscellaneous_2435756876
source MEDLINE; Wiley Online Library All Journals
subjects Angiogenesis
Animals
Antigens
Biomarkers - analysis
Biomedical materials
Blood
Blood clots
Blood Coagulation
Bone healing
Bone Marrow
Bone morphogenetic proteins
bone regeneration
Bone Regeneration - drug effects
Bone Regeneration - radiation effects
Calcification, Physiologic - drug effects
Calcification, Physiologic - radiation effects
Calvaria
Cbfa-1 protein
Cell differentiation
Cell Differentiation - drug effects
Cell proliferation
Cell Proliferation - drug effects
Cell Proliferation - radiation effects
Euthanasia
Fracture Healing
Growth factors
Healing
immunohistochemistry
Irradiation
Laser Therapy - methods
Lasers
low‐level laser therapy
Male
Mesenchymal stem cells
Mineralization
Neovascularization, Physiologic - drug effects
Neovascularization, Physiologic - radiation effects
Osteoblastogenesis
Osteoblasts - drug effects
Osteoblasts - radiation effects
Osteocalcin
Osteopontin
Proliferating cell nuclear antigen
Rats
Rats, Wistar
Vascular endothelial growth factor
title Bone marrow coagulated and low‐level laser therapy accelerate bone healing by enhancing angiogenesis, cell proliferation, osteoblast differentiation, and mineralization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A34%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bone%20marrow%20coagulated%20and%20low%E2%80%90level%20laser%20therapy%20accelerate%20bone%20healing%20by%20enhancing%20angiogenesis,%20cell%20proliferation,%20osteoblast%20differentiation,%20and%20mineralization&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20A&rft.au=Santinoni,%20Carolina%20S.&rft.date=2021-06&rft.volume=109&rft.issue=6&rft.spage=849&rft.epage=858&rft.pages=849-858&rft.issn=1549-3296&rft.eissn=1552-4965&rft_id=info:doi/10.1002/jbm.a.37076&rft_dat=%3Cproquest_cross%3E2435756876%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509221958&rft_id=info:pmid/32815657&rfr_iscdi=true