The mechanical and chemical stability of the interfaces in bioactive materials: The substrate-bioactive surface layer and hydroxyapatite-bioactive surface layer interfaces
Bioactive materials should maintain their properties during implantation and for long time in contact with physiological fluids and tissues. In the present research, five different bioactive materials (a bioactive glass and four different chemically treated bioactive titanium surfaces) have been stu...
Gespeichert in:
Veröffentlicht in: | Materials Science & Engineering C 2020-11, Vol.116, p.111238-111238, Article 111238 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 111238 |
---|---|
container_issue | |
container_start_page | 111238 |
container_title | Materials Science & Engineering C |
container_volume | 116 |
creator | Ferraris, S. Yamaguchi, S. Barbani, N. Cristallini, C. Gautier di Confiengo, G. Barberi, J. Cazzola, M. Miola, M. Vernè, E. Spriano, S. |
description | Bioactive materials should maintain their properties during implantation and for long time in contact with physiological fluids and tissues. In the present research, five different bioactive materials (a bioactive glass and four different chemically treated bioactive titanium surfaces) have been studied and compared in terms of mechanical stability of the surface bioactive layer-substrate interface, their long term bioactivity, the type of hydroxyapatite matured and the stability of the hydroxyapatite-surface bioactive layer interface. Numerous physical and chemical analyses (such as Raman spectroscopy, macro and micro scratch tests, soaking in SBF, Field Emission Scanning Electron Microscopy equipped with Energy Dispersive Spectroscopy (SEM-EDS), zeta potential measurements and Fourier Transformed Infra-Red spectroscopy (FTIR) with chemical imaging) were used. Scratch measurements evidenced differences among the metallic surfaces concerning the mechanical stability of the surface bioactive layer-substrate interface. All the surfaces, despite of different kinetics of bioactivity, are covered by a bone like carbonate-hydroxyapatite with B-type substitution after 28 days of soaking in SBF. However, the stability of the apatite layer is not the same for all the materials: dissolution occurs at pH around 4 (close to inflammation condition) in a more pronounced way for the surfaces with faster bioactivity together with detachment of the surface bioactive layer. A protocol of characterization is here suggested to predict the implant-bone interface stability.
[Display omitted]
•There is not a method to characterize interfaces occurring in bioactive materials for bone contact.•Interfaces are among the substrate, bioactive layer and hydroxyapatite grown on it.•Bioactive titanium and bioglass surfaces are here compared with innovative methodology.•Stability of the grown apatite is not the same for all the materials and dissolution can occur.•Detachment of the bioactive oxide layer can also occur together with apatite dissolution. |
doi_str_mv | 10.1016/j.msec.2020.111238 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2435192017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0928493120316003</els_id><sourcerecordid>2435192017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-60d3545b50b9e0750c3dd367d3ea1a9cb7c9642daa38b081d2ba91c21c965caa3</originalsourceid><addsrcrecordid>eNp9kUtvEzEUhS0EoqHwB1igkdiwmeDXzNiIDap4VKrUTbu2ru0bxdE8gu2pOr-JP4mTFCp10ZXto--ec-VDyHtG14yy9vNuPSR0a055ERjjQr0gK6Y6UVOm2UuyopqrWmrBzsiblHaUtkp0_DU5E1zRVgi-In9utlgN6LYwBgd9BaOv3BaH4yNlsKEPeammTZULGMaMcQMOU7lWNkzgcrgrBlD0AH36Uh380mxTjkWrH5E0HwerHhaMx5jt4uN0v8AecngGfcx8S15tSga-ezjPye2P7zcXv-qr65-XF9-uaie1zHVLvWhkYxtqNdKuoU54L9rOCwQG2tnO6VZyDyCUpYp5bkEzx1mRG1fUc_Lp5LuP0-8ZUzZDSA77Hkac5mS4FA3TnLKuoB-foLtpjmPZrlBSaSm5koXiJ8rFKaWIG7OPYYC4GEbNoUqzM4cqzaFKc6qyDH14sJ7tgP7_yL_uCvD1BGD5i7uA0SQXcHToQ0SXjZ_Cc_5_ARy6s1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448944284</pqid></control><display><type>article</type><title>The mechanical and chemical stability of the interfaces in bioactive materials: The substrate-bioactive surface layer and hydroxyapatite-bioactive surface layer interfaces</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Ferraris, S. ; Yamaguchi, S. ; Barbani, N. ; Cristallini, C. ; Gautier di Confiengo, G. ; Barberi, J. ; Cazzola, M. ; Miola, M. ; Vernè, E. ; Spriano, S.</creator><creatorcontrib>Ferraris, S. ; Yamaguchi, S. ; Barbani, N. ; Cristallini, C. ; Gautier di Confiengo, G. ; Barberi, J. ; Cazzola, M. ; Miola, M. ; Vernè, E. ; Spriano, S.</creatorcontrib><description>Bioactive materials should maintain their properties during implantation and for long time in contact with physiological fluids and tissues. In the present research, five different bioactive materials (a bioactive glass and four different chemically treated bioactive titanium surfaces) have been studied and compared in terms of mechanical stability of the surface bioactive layer-substrate interface, their long term bioactivity, the type of hydroxyapatite matured and the stability of the hydroxyapatite-surface bioactive layer interface. Numerous physical and chemical analyses (such as Raman spectroscopy, macro and micro scratch tests, soaking in SBF, Field Emission Scanning Electron Microscopy equipped with Energy Dispersive Spectroscopy (SEM-EDS), zeta potential measurements and Fourier Transformed Infra-Red spectroscopy (FTIR) with chemical imaging) were used. Scratch measurements evidenced differences among the metallic surfaces concerning the mechanical stability of the surface bioactive layer-substrate interface. All the surfaces, despite of different kinetics of bioactivity, are covered by a bone like carbonate-hydroxyapatite with B-type substitution after 28 days of soaking in SBF. However, the stability of the apatite layer is not the same for all the materials: dissolution occurs at pH around 4 (close to inflammation condition) in a more pronounced way for the surfaces with faster bioactivity together with detachment of the surface bioactive layer. A protocol of characterization is here suggested to predict the implant-bone interface stability.
[Display omitted]
•There is not a method to characterize interfaces occurring in bioactive materials for bone contact.•Interfaces are among the substrate, bioactive layer and hydroxyapatite grown on it.•Bioactive titanium and bioglass surfaces are here compared with innovative methodology.•Stability of the grown apatite is not the same for all the materials and dissolution can occur.•Detachment of the bioactive oxide layer can also occur together with apatite dissolution.</description><identifier>ISSN: 0928-4931</identifier><identifier>EISSN: 1873-0191</identifier><identifier>DOI: 10.1016/j.msec.2020.111238</identifier><identifier>PMID: 32806332</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Apatite ; Apatites ; Bioactive materials ; Biochemistry ; Biocompatibility ; Biocompatible Materials ; Bioglass ; Biological activity ; Biomedical materials ; Body Fluids ; Bone implants ; Chemical treatment ; Durapatite ; Emission analysis ; Field emission microscopy ; Fourier transforms ; Glass ; Hydroxyapatite ; Interface stability ; Interfaces ; Materials science ; Materials Testing ; Microscopy, Electron, Scanning ; Raman spectroscopy ; Scanning electron microscopy ; Scratch resistance ; Scratch tests ; Spectroscopy ; Spectrum analysis ; Stability ; Stability analysis ; Substrates ; Surface layers ; Surface Properties ; Surface stability ; Surfaces ; Surgical implants ; Titanium ; Zeta potential</subject><ispartof>Materials Science & Engineering C, 2020-11, Vol.116, p.111238-111238, Article 111238</ispartof><rights>2020 The Authors</rights><rights>Copyright © 2020 The Authors. Published by Elsevier B.V. All rights reserved.</rights><rights>Copyright Elsevier BV Nov 2020</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-60d3545b50b9e0750c3dd367d3ea1a9cb7c9642daa38b081d2ba91c21c965caa3</citedby><cites>FETCH-LOGICAL-c494t-60d3545b50b9e0750c3dd367d3ea1a9cb7c9642daa38b081d2ba91c21c965caa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msec.2020.111238$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32806332$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ferraris, S.</creatorcontrib><creatorcontrib>Yamaguchi, S.</creatorcontrib><creatorcontrib>Barbani, N.</creatorcontrib><creatorcontrib>Cristallini, C.</creatorcontrib><creatorcontrib>Gautier di Confiengo, G.</creatorcontrib><creatorcontrib>Barberi, J.</creatorcontrib><creatorcontrib>Cazzola, M.</creatorcontrib><creatorcontrib>Miola, M.</creatorcontrib><creatorcontrib>Vernè, E.</creatorcontrib><creatorcontrib>Spriano, S.</creatorcontrib><title>The mechanical and chemical stability of the interfaces in bioactive materials: The substrate-bioactive surface layer and hydroxyapatite-bioactive surface layer interfaces</title><title>Materials Science & Engineering C</title><addtitle>Mater Sci Eng C Mater Biol Appl</addtitle><description>Bioactive materials should maintain their properties during implantation and for long time in contact with physiological fluids and tissues. In the present research, five different bioactive materials (a bioactive glass and four different chemically treated bioactive titanium surfaces) have been studied and compared in terms of mechanical stability of the surface bioactive layer-substrate interface, their long term bioactivity, the type of hydroxyapatite matured and the stability of the hydroxyapatite-surface bioactive layer interface. Numerous physical and chemical analyses (such as Raman spectroscopy, macro and micro scratch tests, soaking in SBF, Field Emission Scanning Electron Microscopy equipped with Energy Dispersive Spectroscopy (SEM-EDS), zeta potential measurements and Fourier Transformed Infra-Red spectroscopy (FTIR) with chemical imaging) were used. Scratch measurements evidenced differences among the metallic surfaces concerning the mechanical stability of the surface bioactive layer-substrate interface. All the surfaces, despite of different kinetics of bioactivity, are covered by a bone like carbonate-hydroxyapatite with B-type substitution after 28 days of soaking in SBF. However, the stability of the apatite layer is not the same for all the materials: dissolution occurs at pH around 4 (close to inflammation condition) in a more pronounced way for the surfaces with faster bioactivity together with detachment of the surface bioactive layer. A protocol of characterization is here suggested to predict the implant-bone interface stability.
[Display omitted]
•There is not a method to characterize interfaces occurring in bioactive materials for bone contact.•Interfaces are among the substrate, bioactive layer and hydroxyapatite grown on it.•Bioactive titanium and bioglass surfaces are here compared with innovative methodology.•Stability of the grown apatite is not the same for all the materials and dissolution can occur.•Detachment of the bioactive oxide layer can also occur together with apatite dissolution.</description><subject>Apatite</subject><subject>Apatites</subject><subject>Bioactive materials</subject><subject>Biochemistry</subject><subject>Biocompatibility</subject><subject>Biocompatible Materials</subject><subject>Bioglass</subject><subject>Biological activity</subject><subject>Biomedical materials</subject><subject>Body Fluids</subject><subject>Bone implants</subject><subject>Chemical treatment</subject><subject>Durapatite</subject><subject>Emission analysis</subject><subject>Field emission microscopy</subject><subject>Fourier transforms</subject><subject>Glass</subject><subject>Hydroxyapatite</subject><subject>Interface stability</subject><subject>Interfaces</subject><subject>Materials science</subject><subject>Materials Testing</subject><subject>Microscopy, Electron, Scanning</subject><subject>Raman spectroscopy</subject><subject>Scanning electron microscopy</subject><subject>Scratch resistance</subject><subject>Scratch tests</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Stability</subject><subject>Stability analysis</subject><subject>Substrates</subject><subject>Surface layers</subject><subject>Surface Properties</subject><subject>Surface stability</subject><subject>Surfaces</subject><subject>Surgical implants</subject><subject>Titanium</subject><subject>Zeta potential</subject><issn>0928-4931</issn><issn>1873-0191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUtvEzEUhS0EoqHwB1igkdiwmeDXzNiIDap4VKrUTbu2ru0bxdE8gu2pOr-JP4mTFCp10ZXto--ec-VDyHtG14yy9vNuPSR0a055ERjjQr0gK6Y6UVOm2UuyopqrWmrBzsiblHaUtkp0_DU5E1zRVgi-In9utlgN6LYwBgd9BaOv3BaH4yNlsKEPeammTZULGMaMcQMOU7lWNkzgcrgrBlD0AH36Uh380mxTjkWrH5E0HwerHhaMx5jt4uN0v8AecngGfcx8S15tSga-ezjPye2P7zcXv-qr65-XF9-uaie1zHVLvWhkYxtqNdKuoU54L9rOCwQG2tnO6VZyDyCUpYp5bkEzx1mRG1fUc_Lp5LuP0-8ZUzZDSA77Hkac5mS4FA3TnLKuoB-foLtpjmPZrlBSaSm5koXiJ8rFKaWIG7OPYYC4GEbNoUqzM4cqzaFKc6qyDH14sJ7tgP7_yL_uCvD1BGD5i7uA0SQXcHToQ0SXjZ_Cc_5_ARy6s1A</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Ferraris, S.</creator><creator>Yamaguchi, S.</creator><creator>Barbani, N.</creator><creator>Cristallini, C.</creator><creator>Gautier di Confiengo, G.</creator><creator>Barberi, J.</creator><creator>Cazzola, M.</creator><creator>Miola, M.</creator><creator>Vernè, E.</creator><creator>Spriano, S.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>202011</creationdate><title>The mechanical and chemical stability of the interfaces in bioactive materials: The substrate-bioactive surface layer and hydroxyapatite-bioactive surface layer interfaces</title><author>Ferraris, S. ; Yamaguchi, S. ; Barbani, N. ; Cristallini, C. ; Gautier di Confiengo, G. ; Barberi, J. ; Cazzola, M. ; Miola, M. ; Vernè, E. ; Spriano, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-60d3545b50b9e0750c3dd367d3ea1a9cb7c9642daa38b081d2ba91c21c965caa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Apatite</topic><topic>Apatites</topic><topic>Bioactive materials</topic><topic>Biochemistry</topic><topic>Biocompatibility</topic><topic>Biocompatible Materials</topic><topic>Bioglass</topic><topic>Biological activity</topic><topic>Biomedical materials</topic><topic>Body Fluids</topic><topic>Bone implants</topic><topic>Chemical treatment</topic><topic>Durapatite</topic><topic>Emission analysis</topic><topic>Field emission microscopy</topic><topic>Fourier transforms</topic><topic>Glass</topic><topic>Hydroxyapatite</topic><topic>Interface stability</topic><topic>Interfaces</topic><topic>Materials science</topic><topic>Materials Testing</topic><topic>Microscopy, Electron, Scanning</topic><topic>Raman spectroscopy</topic><topic>Scanning electron microscopy</topic><topic>Scratch resistance</topic><topic>Scratch tests</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Stability</topic><topic>Stability analysis</topic><topic>Substrates</topic><topic>Surface layers</topic><topic>Surface Properties</topic><topic>Surface stability</topic><topic>Surfaces</topic><topic>Surgical implants</topic><topic>Titanium</topic><topic>Zeta potential</topic><toplevel>online_resources</toplevel><creatorcontrib>Ferraris, S.</creatorcontrib><creatorcontrib>Yamaguchi, S.</creatorcontrib><creatorcontrib>Barbani, N.</creatorcontrib><creatorcontrib>Cristallini, C.</creatorcontrib><creatorcontrib>Gautier di Confiengo, G.</creatorcontrib><creatorcontrib>Barberi, J.</creatorcontrib><creatorcontrib>Cazzola, M.</creatorcontrib><creatorcontrib>Miola, M.</creatorcontrib><creatorcontrib>Vernè, E.</creatorcontrib><creatorcontrib>Spriano, S.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Materials Science & Engineering C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferraris, S.</au><au>Yamaguchi, S.</au><au>Barbani, N.</au><au>Cristallini, C.</au><au>Gautier di Confiengo, G.</au><au>Barberi, J.</au><au>Cazzola, M.</au><au>Miola, M.</au><au>Vernè, E.</au><au>Spriano, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The mechanical and chemical stability of the interfaces in bioactive materials: The substrate-bioactive surface layer and hydroxyapatite-bioactive surface layer interfaces</atitle><jtitle>Materials Science & Engineering C</jtitle><addtitle>Mater Sci Eng C Mater Biol Appl</addtitle><date>2020-11</date><risdate>2020</risdate><volume>116</volume><spage>111238</spage><epage>111238</epage><pages>111238-111238</pages><artnum>111238</artnum><issn>0928-4931</issn><eissn>1873-0191</eissn><abstract>Bioactive materials should maintain their properties during implantation and for long time in contact with physiological fluids and tissues. In the present research, five different bioactive materials (a bioactive glass and four different chemically treated bioactive titanium surfaces) have been studied and compared in terms of mechanical stability of the surface bioactive layer-substrate interface, their long term bioactivity, the type of hydroxyapatite matured and the stability of the hydroxyapatite-surface bioactive layer interface. Numerous physical and chemical analyses (such as Raman spectroscopy, macro and micro scratch tests, soaking in SBF, Field Emission Scanning Electron Microscopy equipped with Energy Dispersive Spectroscopy (SEM-EDS), zeta potential measurements and Fourier Transformed Infra-Red spectroscopy (FTIR) with chemical imaging) were used. Scratch measurements evidenced differences among the metallic surfaces concerning the mechanical stability of the surface bioactive layer-substrate interface. All the surfaces, despite of different kinetics of bioactivity, are covered by a bone like carbonate-hydroxyapatite with B-type substitution after 28 days of soaking in SBF. However, the stability of the apatite layer is not the same for all the materials: dissolution occurs at pH around 4 (close to inflammation condition) in a more pronounced way for the surfaces with faster bioactivity together with detachment of the surface bioactive layer. A protocol of characterization is here suggested to predict the implant-bone interface stability.
[Display omitted]
•There is not a method to characterize interfaces occurring in bioactive materials for bone contact.•Interfaces are among the substrate, bioactive layer and hydroxyapatite grown on it.•Bioactive titanium and bioglass surfaces are here compared with innovative methodology.•Stability of the grown apatite is not the same for all the materials and dissolution can occur.•Detachment of the bioactive oxide layer can also occur together with apatite dissolution.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>32806332</pmid><doi>10.1016/j.msec.2020.111238</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0928-4931 |
ispartof | Materials Science & Engineering C, 2020-11, Vol.116, p.111238-111238, Article 111238 |
issn | 0928-4931 1873-0191 |
language | eng |
recordid | cdi_proquest_miscellaneous_2435192017 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Apatite Apatites Bioactive materials Biochemistry Biocompatibility Biocompatible Materials Bioglass Biological activity Biomedical materials Body Fluids Bone implants Chemical treatment Durapatite Emission analysis Field emission microscopy Fourier transforms Glass Hydroxyapatite Interface stability Interfaces Materials science Materials Testing Microscopy, Electron, Scanning Raman spectroscopy Scanning electron microscopy Scratch resistance Scratch tests Spectroscopy Spectrum analysis Stability Stability analysis Substrates Surface layers Surface Properties Surface stability Surfaces Surgical implants Titanium Zeta potential |
title | The mechanical and chemical stability of the interfaces in bioactive materials: The substrate-bioactive surface layer and hydroxyapatite-bioactive surface layer interfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T13%3A09%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20mechanical%20and%20chemical%20stability%20of%20the%20interfaces%20in%20bioactive%20materials:%20The%20substrate-bioactive%20surface%20layer%20and%20hydroxyapatite-bioactive%20surface%20layer%20interfaces&rft.jtitle=Materials%20Science%20&%20Engineering%20C&rft.au=Ferraris,%20S.&rft.date=2020-11&rft.volume=116&rft.spage=111238&rft.epage=111238&rft.pages=111238-111238&rft.artnum=111238&rft.issn=0928-4931&rft.eissn=1873-0191&rft_id=info:doi/10.1016/j.msec.2020.111238&rft_dat=%3Cproquest_cross%3E2435192017%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2448944284&rft_id=info:pmid/32806332&rft_els_id=S0928493120316003&rfr_iscdi=true |