Linking Molecular Behavior to Macroscopic Properties in Ideal Dynamic Covalent Networks

Dynamic covalent networks (DCvNs) are increasingly used in advanced materials design with applications ranging from recyclable thermosets to self-healing hydrogels. However, the relationship between the underlying chemistry at the junctions of DCvNs and their macroscopic properties is still not full...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2020-09, Vol.142 (36), p.15371-15385
Hauptverfasser: Marco-Dufort, Bruno, Iten, Ramon, Tibbitt, Mark W
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15385
container_issue 36
container_start_page 15371
container_title Journal of the American Chemical Society
container_volume 142
creator Marco-Dufort, Bruno
Iten, Ramon
Tibbitt, Mark W
description Dynamic covalent networks (DCvNs) are increasingly used in advanced materials design with applications ranging from recyclable thermosets to self-healing hydrogels. However, the relationship between the underlying chemistry at the junctions of DCvNs and their macroscopic properties is still not fully understood. In this work, we constructed a robust framework to predict how complex network behavior in DCvNs emerges from the chemical landscape of the dynamic chemistry at the junction. Ideal dynamic covalent boronic ester-based hydrogels were used as model DCvNs. We developed physical models that describe how viscoelastic properties, as measured by shear rheometry, are linked to the molecular behavior of the dynamic junction, quantified via fluorescence and NMR spectroscopy and DFT calculations. Additionally, shear rheometry was combined with Transition State Theory to quantify the kinetics and thermodynamics of network rearrangements, enabling a mechanistic understanding including preferred reaction pathways for dynamic covalent chemistries. We applied this approach to corroborate the “loose-bolt” postulate for the reaction mechanism in Wulff-type boronic acids. These findings, grounded in molecular principles, advance our understanding and rational design of dynamic polymer networks, improving our ability to predict, design, and leverage their unique properties for future applications.
doi_str_mv 10.1021/jacs.0c06192
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2435188212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2435188212</sourcerecordid><originalsourceid>FETCH-LOGICAL-a428t-cb85f02de8405b6da5d65532992aca1309ca2417881225007f15b1deffba5ae63</originalsourceid><addsrcrecordid>eNptkL1PwzAQxS0EoqWwMSOPDKTYTpw4I5SvSi0wgBiji3OBtElc7KSo_z2JWmBhOp3u3bt7P0JOORtzJvjlArQbM81CHos9MuRSME9yEe6TIWNMeJEK_QE5cm7RtYFQ_JAMfKGYipQ_JG-zol4W9TudmxJ1W4Kl1_gB68JY2hg6B22N02ZVaPpszQptU6CjRU2nGUJJbzY1VN1sYtZQYt3QR2y-jF26Y3KQQ-nwZFdH5PXu9mXy4M2e7qeTq5kH3SuNp1MlcyYyVAGTaZiBzEIpfRHHAjRwn8UaRMAjpbgQkrEo5zLlGeZ5ChIw9EfkfOu7suazRdckVeE0liXUaFqXiMCXXCnBRSe92Er7SM5inqxsUYHdJJwlPcqkR5nsUHbys51zm1aY_Yp_2P2d7rcWprV1F_R_r2_ug3yP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2435188212</pqid></control><display><type>article</type><title>Linking Molecular Behavior to Macroscopic Properties in Ideal Dynamic Covalent Networks</title><source>ACS Publications</source><creator>Marco-Dufort, Bruno ; Iten, Ramon ; Tibbitt, Mark W</creator><creatorcontrib>Marco-Dufort, Bruno ; Iten, Ramon ; Tibbitt, Mark W</creatorcontrib><description>Dynamic covalent networks (DCvNs) are increasingly used in advanced materials design with applications ranging from recyclable thermosets to self-healing hydrogels. However, the relationship between the underlying chemistry at the junctions of DCvNs and their macroscopic properties is still not fully understood. In this work, we constructed a robust framework to predict how complex network behavior in DCvNs emerges from the chemical landscape of the dynamic chemistry at the junction. Ideal dynamic covalent boronic ester-based hydrogels were used as model DCvNs. We developed physical models that describe how viscoelastic properties, as measured by shear rheometry, are linked to the molecular behavior of the dynamic junction, quantified via fluorescence and NMR spectroscopy and DFT calculations. Additionally, shear rheometry was combined with Transition State Theory to quantify the kinetics and thermodynamics of network rearrangements, enabling a mechanistic understanding including preferred reaction pathways for dynamic covalent chemistries. We applied this approach to corroborate the “loose-bolt” postulate for the reaction mechanism in Wulff-type boronic acids. These findings, grounded in molecular principles, advance our understanding and rational design of dynamic polymer networks, improving our ability to predict, design, and leverage their unique properties for future applications.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.0c06192</identifier><identifier>PMID: 32808783</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2020-09, Vol.142 (36), p.15371-15385</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a428t-cb85f02de8405b6da5d65532992aca1309ca2417881225007f15b1deffba5ae63</citedby><cites>FETCH-LOGICAL-a428t-cb85f02de8405b6da5d65532992aca1309ca2417881225007f15b1deffba5ae63</cites><orcidid>0000-0002-4917-7187 ; 0000-0001-9098-9964</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.0c06192$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.0c06192$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32808783$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marco-Dufort, Bruno</creatorcontrib><creatorcontrib>Iten, Ramon</creatorcontrib><creatorcontrib>Tibbitt, Mark W</creatorcontrib><title>Linking Molecular Behavior to Macroscopic Properties in Ideal Dynamic Covalent Networks</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Dynamic covalent networks (DCvNs) are increasingly used in advanced materials design with applications ranging from recyclable thermosets to self-healing hydrogels. However, the relationship between the underlying chemistry at the junctions of DCvNs and their macroscopic properties is still not fully understood. In this work, we constructed a robust framework to predict how complex network behavior in DCvNs emerges from the chemical landscape of the dynamic chemistry at the junction. Ideal dynamic covalent boronic ester-based hydrogels were used as model DCvNs. We developed physical models that describe how viscoelastic properties, as measured by shear rheometry, are linked to the molecular behavior of the dynamic junction, quantified via fluorescence and NMR spectroscopy and DFT calculations. Additionally, shear rheometry was combined with Transition State Theory to quantify the kinetics and thermodynamics of network rearrangements, enabling a mechanistic understanding including preferred reaction pathways for dynamic covalent chemistries. We applied this approach to corroborate the “loose-bolt” postulate for the reaction mechanism in Wulff-type boronic acids. These findings, grounded in molecular principles, advance our understanding and rational design of dynamic polymer networks, improving our ability to predict, design, and leverage their unique properties for future applications.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNptkL1PwzAQxS0EoqWwMSOPDKTYTpw4I5SvSi0wgBiji3OBtElc7KSo_z2JWmBhOp3u3bt7P0JOORtzJvjlArQbM81CHos9MuRSME9yEe6TIWNMeJEK_QE5cm7RtYFQ_JAMfKGYipQ_JG-zol4W9TudmxJ1W4Kl1_gB68JY2hg6B22N02ZVaPpszQptU6CjRU2nGUJJbzY1VN1sYtZQYt3QR2y-jF26Y3KQQ-nwZFdH5PXu9mXy4M2e7qeTq5kH3SuNp1MlcyYyVAGTaZiBzEIpfRHHAjRwn8UaRMAjpbgQkrEo5zLlGeZ5ChIw9EfkfOu7suazRdckVeE0liXUaFqXiMCXXCnBRSe92Er7SM5inqxsUYHdJJwlPcqkR5nsUHbys51zm1aY_Yp_2P2d7rcWprV1F_R_r2_ug3yP</recordid><startdate>20200909</startdate><enddate>20200909</enddate><creator>Marco-Dufort, Bruno</creator><creator>Iten, Ramon</creator><creator>Tibbitt, Mark W</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4917-7187</orcidid><orcidid>https://orcid.org/0000-0001-9098-9964</orcidid></search><sort><creationdate>20200909</creationdate><title>Linking Molecular Behavior to Macroscopic Properties in Ideal Dynamic Covalent Networks</title><author>Marco-Dufort, Bruno ; Iten, Ramon ; Tibbitt, Mark W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a428t-cb85f02de8405b6da5d65532992aca1309ca2417881225007f15b1deffba5ae63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marco-Dufort, Bruno</creatorcontrib><creatorcontrib>Iten, Ramon</creatorcontrib><creatorcontrib>Tibbitt, Mark W</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marco-Dufort, Bruno</au><au>Iten, Ramon</au><au>Tibbitt, Mark W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linking Molecular Behavior to Macroscopic Properties in Ideal Dynamic Covalent Networks</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2020-09-09</date><risdate>2020</risdate><volume>142</volume><issue>36</issue><spage>15371</spage><epage>15385</epage><pages>15371-15385</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Dynamic covalent networks (DCvNs) are increasingly used in advanced materials design with applications ranging from recyclable thermosets to self-healing hydrogels. However, the relationship between the underlying chemistry at the junctions of DCvNs and their macroscopic properties is still not fully understood. In this work, we constructed a robust framework to predict how complex network behavior in DCvNs emerges from the chemical landscape of the dynamic chemistry at the junction. Ideal dynamic covalent boronic ester-based hydrogels were used as model DCvNs. We developed physical models that describe how viscoelastic properties, as measured by shear rheometry, are linked to the molecular behavior of the dynamic junction, quantified via fluorescence and NMR spectroscopy and DFT calculations. Additionally, shear rheometry was combined with Transition State Theory to quantify the kinetics and thermodynamics of network rearrangements, enabling a mechanistic understanding including preferred reaction pathways for dynamic covalent chemistries. We applied this approach to corroborate the “loose-bolt” postulate for the reaction mechanism in Wulff-type boronic acids. These findings, grounded in molecular principles, advance our understanding and rational design of dynamic polymer networks, improving our ability to predict, design, and leverage their unique properties for future applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32808783</pmid><doi>10.1021/jacs.0c06192</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4917-7187</orcidid><orcidid>https://orcid.org/0000-0001-9098-9964</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2020-09, Vol.142 (36), p.15371-15385
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_2435188212
source ACS Publications
title Linking Molecular Behavior to Macroscopic Properties in Ideal Dynamic Covalent Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T12%3A42%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linking%20Molecular%20Behavior%20to%20Macroscopic%20Properties%20in%20Ideal%20Dynamic%20Covalent%20Networks&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Marco-Dufort,%20Bruno&rft.date=2020-09-09&rft.volume=142&rft.issue=36&rft.spage=15371&rft.epage=15385&rft.pages=15371-15385&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.0c06192&rft_dat=%3Cproquest_cross%3E2435188212%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2435188212&rft_id=info:pmid/32808783&rfr_iscdi=true