Linking Molecular Behavior to Macroscopic Properties in Ideal Dynamic Covalent Networks
Dynamic covalent networks (DCvNs) are increasingly used in advanced materials design with applications ranging from recyclable thermosets to self-healing hydrogels. However, the relationship between the underlying chemistry at the junctions of DCvNs and their macroscopic properties is still not full...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2020-09, Vol.142 (36), p.15371-15385 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15385 |
---|---|
container_issue | 36 |
container_start_page | 15371 |
container_title | Journal of the American Chemical Society |
container_volume | 142 |
creator | Marco-Dufort, Bruno Iten, Ramon Tibbitt, Mark W |
description | Dynamic covalent networks (DCvNs) are increasingly used in advanced materials design with applications ranging from recyclable thermosets to self-healing hydrogels. However, the relationship between the underlying chemistry at the junctions of DCvNs and their macroscopic properties is still not fully understood. In this work, we constructed a robust framework to predict how complex network behavior in DCvNs emerges from the chemical landscape of the dynamic chemistry at the junction. Ideal dynamic covalent boronic ester-based hydrogels were used as model DCvNs. We developed physical models that describe how viscoelastic properties, as measured by shear rheometry, are linked to the molecular behavior of the dynamic junction, quantified via fluorescence and NMR spectroscopy and DFT calculations. Additionally, shear rheometry was combined with Transition State Theory to quantify the kinetics and thermodynamics of network rearrangements, enabling a mechanistic understanding including preferred reaction pathways for dynamic covalent chemistries. We applied this approach to corroborate the “loose-bolt” postulate for the reaction mechanism in Wulff-type boronic acids. These findings, grounded in molecular principles, advance our understanding and rational design of dynamic polymer networks, improving our ability to predict, design, and leverage their unique properties for future applications. |
doi_str_mv | 10.1021/jacs.0c06192 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2435188212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2435188212</sourcerecordid><originalsourceid>FETCH-LOGICAL-a428t-cb85f02de8405b6da5d65532992aca1309ca2417881225007f15b1deffba5ae63</originalsourceid><addsrcrecordid>eNptkL1PwzAQxS0EoqWwMSOPDKTYTpw4I5SvSi0wgBiji3OBtElc7KSo_z2JWmBhOp3u3bt7P0JOORtzJvjlArQbM81CHos9MuRSME9yEe6TIWNMeJEK_QE5cm7RtYFQ_JAMfKGYipQ_JG-zol4W9TudmxJ1W4Kl1_gB68JY2hg6B22N02ZVaPpszQptU6CjRU2nGUJJbzY1VN1sYtZQYt3QR2y-jF26Y3KQQ-nwZFdH5PXu9mXy4M2e7qeTq5kH3SuNp1MlcyYyVAGTaZiBzEIpfRHHAjRwn8UaRMAjpbgQkrEo5zLlGeZ5ChIw9EfkfOu7suazRdckVeE0liXUaFqXiMCXXCnBRSe92Er7SM5inqxsUYHdJJwlPcqkR5nsUHbys51zm1aY_Yp_2P2d7rcWprV1F_R_r2_ug3yP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2435188212</pqid></control><display><type>article</type><title>Linking Molecular Behavior to Macroscopic Properties in Ideal Dynamic Covalent Networks</title><source>ACS Publications</source><creator>Marco-Dufort, Bruno ; Iten, Ramon ; Tibbitt, Mark W</creator><creatorcontrib>Marco-Dufort, Bruno ; Iten, Ramon ; Tibbitt, Mark W</creatorcontrib><description>Dynamic covalent networks (DCvNs) are increasingly used in advanced materials design with applications ranging from recyclable thermosets to self-healing hydrogels. However, the relationship between the underlying chemistry at the junctions of DCvNs and their macroscopic properties is still not fully understood. In this work, we constructed a robust framework to predict how complex network behavior in DCvNs emerges from the chemical landscape of the dynamic chemistry at the junction. Ideal dynamic covalent boronic ester-based hydrogels were used as model DCvNs. We developed physical models that describe how viscoelastic properties, as measured by shear rheometry, are linked to the molecular behavior of the dynamic junction, quantified via fluorescence and NMR spectroscopy and DFT calculations. Additionally, shear rheometry was combined with Transition State Theory to quantify the kinetics and thermodynamics of network rearrangements, enabling a mechanistic understanding including preferred reaction pathways for dynamic covalent chemistries. We applied this approach to corroborate the “loose-bolt” postulate for the reaction mechanism in Wulff-type boronic acids. These findings, grounded in molecular principles, advance our understanding and rational design of dynamic polymer networks, improving our ability to predict, design, and leverage their unique properties for future applications.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.0c06192</identifier><identifier>PMID: 32808783</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2020-09, Vol.142 (36), p.15371-15385</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a428t-cb85f02de8405b6da5d65532992aca1309ca2417881225007f15b1deffba5ae63</citedby><cites>FETCH-LOGICAL-a428t-cb85f02de8405b6da5d65532992aca1309ca2417881225007f15b1deffba5ae63</cites><orcidid>0000-0002-4917-7187 ; 0000-0001-9098-9964</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.0c06192$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.0c06192$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32808783$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marco-Dufort, Bruno</creatorcontrib><creatorcontrib>Iten, Ramon</creatorcontrib><creatorcontrib>Tibbitt, Mark W</creatorcontrib><title>Linking Molecular Behavior to Macroscopic Properties in Ideal Dynamic Covalent Networks</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Dynamic covalent networks (DCvNs) are increasingly used in advanced materials design with applications ranging from recyclable thermosets to self-healing hydrogels. However, the relationship between the underlying chemistry at the junctions of DCvNs and their macroscopic properties is still not fully understood. In this work, we constructed a robust framework to predict how complex network behavior in DCvNs emerges from the chemical landscape of the dynamic chemistry at the junction. Ideal dynamic covalent boronic ester-based hydrogels were used as model DCvNs. We developed physical models that describe how viscoelastic properties, as measured by shear rheometry, are linked to the molecular behavior of the dynamic junction, quantified via fluorescence and NMR spectroscopy and DFT calculations. Additionally, shear rheometry was combined with Transition State Theory to quantify the kinetics and thermodynamics of network rearrangements, enabling a mechanistic understanding including preferred reaction pathways for dynamic covalent chemistries. We applied this approach to corroborate the “loose-bolt” postulate for the reaction mechanism in Wulff-type boronic acids. These findings, grounded in molecular principles, advance our understanding and rational design of dynamic polymer networks, improving our ability to predict, design, and leverage their unique properties for future applications.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNptkL1PwzAQxS0EoqWwMSOPDKTYTpw4I5SvSi0wgBiji3OBtElc7KSo_z2JWmBhOp3u3bt7P0JOORtzJvjlArQbM81CHos9MuRSME9yEe6TIWNMeJEK_QE5cm7RtYFQ_JAMfKGYipQ_JG-zol4W9TudmxJ1W4Kl1_gB68JY2hg6B22N02ZVaPpszQptU6CjRU2nGUJJbzY1VN1sYtZQYt3QR2y-jF26Y3KQQ-nwZFdH5PXu9mXy4M2e7qeTq5kH3SuNp1MlcyYyVAGTaZiBzEIpfRHHAjRwn8UaRMAjpbgQkrEo5zLlGeZ5ChIw9EfkfOu7suazRdckVeE0liXUaFqXiMCXXCnBRSe92Er7SM5inqxsUYHdJJwlPcqkR5nsUHbys51zm1aY_Yp_2P2d7rcWprV1F_R_r2_ug3yP</recordid><startdate>20200909</startdate><enddate>20200909</enddate><creator>Marco-Dufort, Bruno</creator><creator>Iten, Ramon</creator><creator>Tibbitt, Mark W</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4917-7187</orcidid><orcidid>https://orcid.org/0000-0001-9098-9964</orcidid></search><sort><creationdate>20200909</creationdate><title>Linking Molecular Behavior to Macroscopic Properties in Ideal Dynamic Covalent Networks</title><author>Marco-Dufort, Bruno ; Iten, Ramon ; Tibbitt, Mark W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a428t-cb85f02de8405b6da5d65532992aca1309ca2417881225007f15b1deffba5ae63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marco-Dufort, Bruno</creatorcontrib><creatorcontrib>Iten, Ramon</creatorcontrib><creatorcontrib>Tibbitt, Mark W</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marco-Dufort, Bruno</au><au>Iten, Ramon</au><au>Tibbitt, Mark W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linking Molecular Behavior to Macroscopic Properties in Ideal Dynamic Covalent Networks</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2020-09-09</date><risdate>2020</risdate><volume>142</volume><issue>36</issue><spage>15371</spage><epage>15385</epage><pages>15371-15385</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Dynamic covalent networks (DCvNs) are increasingly used in advanced materials design with applications ranging from recyclable thermosets to self-healing hydrogels. However, the relationship between the underlying chemistry at the junctions of DCvNs and their macroscopic properties is still not fully understood. In this work, we constructed a robust framework to predict how complex network behavior in DCvNs emerges from the chemical landscape of the dynamic chemistry at the junction. Ideal dynamic covalent boronic ester-based hydrogels were used as model DCvNs. We developed physical models that describe how viscoelastic properties, as measured by shear rheometry, are linked to the molecular behavior of the dynamic junction, quantified via fluorescence and NMR spectroscopy and DFT calculations. Additionally, shear rheometry was combined with Transition State Theory to quantify the kinetics and thermodynamics of network rearrangements, enabling a mechanistic understanding including preferred reaction pathways for dynamic covalent chemistries. We applied this approach to corroborate the “loose-bolt” postulate for the reaction mechanism in Wulff-type boronic acids. These findings, grounded in molecular principles, advance our understanding and rational design of dynamic polymer networks, improving our ability to predict, design, and leverage their unique properties for future applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32808783</pmid><doi>10.1021/jacs.0c06192</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4917-7187</orcidid><orcidid>https://orcid.org/0000-0001-9098-9964</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2020-09, Vol.142 (36), p.15371-15385 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_proquest_miscellaneous_2435188212 |
source | ACS Publications |
title | Linking Molecular Behavior to Macroscopic Properties in Ideal Dynamic Covalent Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T12%3A42%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linking%20Molecular%20Behavior%20to%20Macroscopic%20Properties%20in%20Ideal%20Dynamic%20Covalent%20Networks&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Marco-Dufort,%20Bruno&rft.date=2020-09-09&rft.volume=142&rft.issue=36&rft.spage=15371&rft.epage=15385&rft.pages=15371-15385&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.0c06192&rft_dat=%3Cproquest_cross%3E2435188212%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2435188212&rft_id=info:pmid/32808783&rfr_iscdi=true |