Pollen analysis using multispectral imaging flow cytometry and deep learning

Summary Pollen identification and quantification are crucial but challenging tasks in addressing a variety of evolutionary and ecological questions (pollination, paleobotany), but also for other fields of research (e.g. allergology, honey analysis or forensics). Researchers are exploring alternative...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist 2021-01, Vol.229 (1), p.593-606
Hauptverfasser: Dunker, Susanne, Motivans, Elena, Rakosy, Demetra, Boho, David, Mäder, Patrick, Hornick, Thomas, Knight, Tiffany M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 606
container_issue 1
container_start_page 593
container_title The New phytologist
container_volume 229
creator Dunker, Susanne
Motivans, Elena
Rakosy, Demetra
Boho, David
Mäder, Patrick
Hornick, Thomas
Knight, Tiffany M.
description Summary Pollen identification and quantification are crucial but challenging tasks in addressing a variety of evolutionary and ecological questions (pollination, paleobotany), but also for other fields of research (e.g. allergology, honey analysis or forensics). Researchers are exploring alternative methods to automate these tasks but, for several reasons, manual microscopy is still the gold standard. In this study, we present a new method for pollen analysis using multispectral imaging flow cytometry in combination with deep learning. We demonstrate that our method allows fast measurement while delivering high accuracy pollen identification. A dataset of 426 876 images depicting pollen from 35 plant species was used to train a convolutional neural network classifier. We found the best‐performing classifier to yield a species‐averaged accuracy of 96%. Even species that are difficult to differentiate using microscopy could be clearly separated. Our approach also allows a detailed determination of morphological pollen traits, such as size, symmetry or structure. Our phylogenetic analyses suggest phylogenetic conservatism in some of these traits. Given a comprehensive pollen reference database, we provide a powerful tool to be used in any pollen study with a need for rapid and accurate species identification, pollen grain quantification and trait extraction of recent pollen.
doi_str_mv 10.1111/nph.16882
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2434755505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2434755505</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3882-b9303a7a376df7d3125ecd5765e7250c97b412ccfc3b0fad376a92b5d76857673</originalsourceid><addsrcrecordid>eNp10E1LwzAYB_AgipvTg19ACl700C3vaY8y1AlDd1DwVtIknR3pi0nL6Lc3c9ODYC6B8Hv-5PkDcIngFIUzq9uPKeJJgo_AGFGexgki4hiMIcRJzCl_H4Ez7zcQwpRxfApGBCeQCEbHYLlqrDV1JGtpB1_6qPdlvY6q3nalb43qnLRRWcn17rWwzTZSQ9dUpnNDmNGRNqaNrJGuDuAcnBTSenNxuCfg7eH-db6Ily-PT_O7ZaxI-GScpwQSKSQRXBdCE4SZUZoJzozADKpU5BRhpQpFclhIHZxMcc604ElQgkzAzT63dc1nb3yXVaVXxlpZm6b3GaaECsYYZIFe_6Gbpndh2Z3iglMKg56A271SrvHemSJrXVjaDRmC2a7iLFScfVcc7NUhsc8ro3_lT6cBzPZgW1oz_J-UPa8W-8gvV_-FCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2467644024</pqid></control><display><type>article</type><title>Pollen analysis using multispectral imaging flow cytometry and deep learning</title><source>MEDLINE</source><source>Wiley Online Library Free Content</source><source>Access via Wiley Online Library</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Dunker, Susanne ; Motivans, Elena ; Rakosy, Demetra ; Boho, David ; Mäder, Patrick ; Hornick, Thomas ; Knight, Tiffany M.</creator><creatorcontrib>Dunker, Susanne ; Motivans, Elena ; Rakosy, Demetra ; Boho, David ; Mäder, Patrick ; Hornick, Thomas ; Knight, Tiffany M.</creatorcontrib><description>Summary Pollen identification and quantification are crucial but challenging tasks in addressing a variety of evolutionary and ecological questions (pollination, paleobotany), but also for other fields of research (e.g. allergology, honey analysis or forensics). Researchers are exploring alternative methods to automate these tasks but, for several reasons, manual microscopy is still the gold standard. In this study, we present a new method for pollen analysis using multispectral imaging flow cytometry in combination with deep learning. We demonstrate that our method allows fast measurement while delivering high accuracy pollen identification. A dataset of 426 876 images depicting pollen from 35 plant species was used to train a convolutional neural network classifier. We found the best‐performing classifier to yield a species‐averaged accuracy of 96%. Even species that are difficult to differentiate using microscopy could be clearly separated. Our approach also allows a detailed determination of morphological pollen traits, such as size, symmetry or structure. Our phylogenetic analyses suggest phylogenetic conservatism in some of these traits. Given a comprehensive pollen reference database, we provide a powerful tool to be used in any pollen study with a need for rapid and accurate species identification, pollen grain quantification and trait extraction of recent pollen.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.16882</identifier><identifier>PMID: 32803754</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Accuracy ; Artificial neural networks ; Classifiers ; convolutional neural networks ; Deep Learning ; Flow Cytometry ; Forensic science ; Identification ; Imaging techniques ; Microscopy ; multispectral imaging flow cytometry ; Neural networks ; Palynology ; Phylogenetics ; Phylogeny ; Pollen ; Pollination ; pollinator ; Species ; Species classification ; Species identification</subject><ispartof>The New phytologist, 2021-01, Vol.229 (1), p.593-606</ispartof><rights>2020 The Authors New Phytologist © 2020 New Phytologist Trust</rights><rights>2020 The Authors New Phytologist © 2020 New Phytologist Trust.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3882-b9303a7a376df7d3125ecd5765e7250c97b412ccfc3b0fad376a92b5d76857673</citedby><cites>FETCH-LOGICAL-c3882-b9303a7a376df7d3125ecd5765e7250c97b412ccfc3b0fad376a92b5d76857673</cites><orcidid>0000-0001-8010-4990 ; 0000-0003-0318-1567 ; 0000-0001-6871-2707 ; 0000-0001-7276-776X ; 0000-0003-0280-9260</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fnph.16882$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fnph.16882$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32803754$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dunker, Susanne</creatorcontrib><creatorcontrib>Motivans, Elena</creatorcontrib><creatorcontrib>Rakosy, Demetra</creatorcontrib><creatorcontrib>Boho, David</creatorcontrib><creatorcontrib>Mäder, Patrick</creatorcontrib><creatorcontrib>Hornick, Thomas</creatorcontrib><creatorcontrib>Knight, Tiffany M.</creatorcontrib><title>Pollen analysis using multispectral imaging flow cytometry and deep learning</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>Summary Pollen identification and quantification are crucial but challenging tasks in addressing a variety of evolutionary and ecological questions (pollination, paleobotany), but also for other fields of research (e.g. allergology, honey analysis or forensics). Researchers are exploring alternative methods to automate these tasks but, for several reasons, manual microscopy is still the gold standard. In this study, we present a new method for pollen analysis using multispectral imaging flow cytometry in combination with deep learning. We demonstrate that our method allows fast measurement while delivering high accuracy pollen identification. A dataset of 426 876 images depicting pollen from 35 plant species was used to train a convolutional neural network classifier. We found the best‐performing classifier to yield a species‐averaged accuracy of 96%. Even species that are difficult to differentiate using microscopy could be clearly separated. Our approach also allows a detailed determination of morphological pollen traits, such as size, symmetry or structure. Our phylogenetic analyses suggest phylogenetic conservatism in some of these traits. Given a comprehensive pollen reference database, we provide a powerful tool to be used in any pollen study with a need for rapid and accurate species identification, pollen grain quantification and trait extraction of recent pollen.</description><subject>Accuracy</subject><subject>Artificial neural networks</subject><subject>Classifiers</subject><subject>convolutional neural networks</subject><subject>Deep Learning</subject><subject>Flow Cytometry</subject><subject>Forensic science</subject><subject>Identification</subject><subject>Imaging techniques</subject><subject>Microscopy</subject><subject>multispectral imaging flow cytometry</subject><subject>Neural networks</subject><subject>Palynology</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Pollen</subject><subject>Pollination</subject><subject>pollinator</subject><subject>Species</subject><subject>Species classification</subject><subject>Species identification</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp10E1LwzAYB_AgipvTg19ACl700C3vaY8y1AlDd1DwVtIknR3pi0nL6Lc3c9ODYC6B8Hv-5PkDcIngFIUzq9uPKeJJgo_AGFGexgki4hiMIcRJzCl_H4Ez7zcQwpRxfApGBCeQCEbHYLlqrDV1JGtpB1_6qPdlvY6q3nalb43qnLRRWcn17rWwzTZSQ9dUpnNDmNGRNqaNrJGuDuAcnBTSenNxuCfg7eH-db6Ily-PT_O7ZaxI-GScpwQSKSQRXBdCE4SZUZoJzozADKpU5BRhpQpFclhIHZxMcc604ElQgkzAzT63dc1nb3yXVaVXxlpZm6b3GaaECsYYZIFe_6Gbpndh2Z3iglMKg56A271SrvHemSJrXVjaDRmC2a7iLFScfVcc7NUhsc8ro3_lT6cBzPZgW1oz_J-UPa8W-8gvV_-FCw</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Dunker, Susanne</creator><creator>Motivans, Elena</creator><creator>Rakosy, Demetra</creator><creator>Boho, David</creator><creator>Mäder, Patrick</creator><creator>Hornick, Thomas</creator><creator>Knight, Tiffany M.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8010-4990</orcidid><orcidid>https://orcid.org/0000-0003-0318-1567</orcidid><orcidid>https://orcid.org/0000-0001-6871-2707</orcidid><orcidid>https://orcid.org/0000-0001-7276-776X</orcidid><orcidid>https://orcid.org/0000-0003-0280-9260</orcidid></search><sort><creationdate>202101</creationdate><title>Pollen analysis using multispectral imaging flow cytometry and deep learning</title><author>Dunker, Susanne ; Motivans, Elena ; Rakosy, Demetra ; Boho, David ; Mäder, Patrick ; Hornick, Thomas ; Knight, Tiffany M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3882-b9303a7a376df7d3125ecd5765e7250c97b412ccfc3b0fad376a92b5d76857673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Artificial neural networks</topic><topic>Classifiers</topic><topic>convolutional neural networks</topic><topic>Deep Learning</topic><topic>Flow Cytometry</topic><topic>Forensic science</topic><topic>Identification</topic><topic>Imaging techniques</topic><topic>Microscopy</topic><topic>multispectral imaging flow cytometry</topic><topic>Neural networks</topic><topic>Palynology</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Pollen</topic><topic>Pollination</topic><topic>pollinator</topic><topic>Species</topic><topic>Species classification</topic><topic>Species identification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dunker, Susanne</creatorcontrib><creatorcontrib>Motivans, Elena</creatorcontrib><creatorcontrib>Rakosy, Demetra</creatorcontrib><creatorcontrib>Boho, David</creatorcontrib><creatorcontrib>Mäder, Patrick</creatorcontrib><creatorcontrib>Hornick, Thomas</creatorcontrib><creatorcontrib>Knight, Tiffany M.</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dunker, Susanne</au><au>Motivans, Elena</au><au>Rakosy, Demetra</au><au>Boho, David</au><au>Mäder, Patrick</au><au>Hornick, Thomas</au><au>Knight, Tiffany M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pollen analysis using multispectral imaging flow cytometry and deep learning</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2021-01</date><risdate>2021</risdate><volume>229</volume><issue>1</issue><spage>593</spage><epage>606</epage><pages>593-606</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>Summary Pollen identification and quantification are crucial but challenging tasks in addressing a variety of evolutionary and ecological questions (pollination, paleobotany), but also for other fields of research (e.g. allergology, honey analysis or forensics). Researchers are exploring alternative methods to automate these tasks but, for several reasons, manual microscopy is still the gold standard. In this study, we present a new method for pollen analysis using multispectral imaging flow cytometry in combination with deep learning. We demonstrate that our method allows fast measurement while delivering high accuracy pollen identification. A dataset of 426 876 images depicting pollen from 35 plant species was used to train a convolutional neural network classifier. We found the best‐performing classifier to yield a species‐averaged accuracy of 96%. Even species that are difficult to differentiate using microscopy could be clearly separated. Our approach also allows a detailed determination of morphological pollen traits, such as size, symmetry or structure. Our phylogenetic analyses suggest phylogenetic conservatism in some of these traits. Given a comprehensive pollen reference database, we provide a powerful tool to be used in any pollen study with a need for rapid and accurate species identification, pollen grain quantification and trait extraction of recent pollen.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32803754</pmid><doi>10.1111/nph.16882</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8010-4990</orcidid><orcidid>https://orcid.org/0000-0003-0318-1567</orcidid><orcidid>https://orcid.org/0000-0001-6871-2707</orcidid><orcidid>https://orcid.org/0000-0001-7276-776X</orcidid><orcidid>https://orcid.org/0000-0003-0280-9260</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2021-01, Vol.229 (1), p.593-606
issn 0028-646X
1469-8137
language eng
recordid cdi_proquest_miscellaneous_2434755505
source MEDLINE; Wiley Online Library Free Content; Access via Wiley Online Library; EZB-FREE-00999 freely available EZB journals
subjects Accuracy
Artificial neural networks
Classifiers
convolutional neural networks
Deep Learning
Flow Cytometry
Forensic science
Identification
Imaging techniques
Microscopy
multispectral imaging flow cytometry
Neural networks
Palynology
Phylogenetics
Phylogeny
Pollen
Pollination
pollinator
Species
Species classification
Species identification
title Pollen analysis using multispectral imaging flow cytometry and deep learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A36%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pollen%20analysis%20using%20multispectral%20imaging%20flow%20cytometry%20and%20deep%20learning&rft.jtitle=The%20New%20phytologist&rft.au=Dunker,%20Susanne&rft.date=2021-01&rft.volume=229&rft.issue=1&rft.spage=593&rft.epage=606&rft.pages=593-606&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.16882&rft_dat=%3Cproquest_cross%3E2434755505%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2467644024&rft_id=info:pmid/32803754&rfr_iscdi=true