Active restoration accelerates the carbon recovery of human-modified tropical forests

There is currently great interest in the capacity of global forest to store carbon and hence contribute to the mitigation of climate change in the coming decades. In a study of Southeast Asian tropical forest, Philipson et al. show that active restoration of logged forests generates higher rates of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2020-08, Vol.369 (6505), p.838-841
Hauptverfasser: Philipson, Christopher D., Cutler, Mark E. J., Brodrick, Philip G., Asner, Gregory P., Boyd, Doreen S., Moura Costa, Pedro, Fiddes, Joel, Foody, Giles M., van der Heijden, Geertje M. F., Ledo, Alicia, Lincoln, Philippa R., Margrove, James A., Martin, Roberta E., Milne, Sol, Pinard, Michelle A., Reynolds, Glen, Snoep, Martijn, Tangki, Hamzah, Sau Wai, Yap, Wheeler, Charlotte E., Burslem, David F. R. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 841
container_issue 6505
container_start_page 838
container_title Science (American Association for the Advancement of Science)
container_volume 369
creator Philipson, Christopher D.
Cutler, Mark E. J.
Brodrick, Philip G.
Asner, Gregory P.
Boyd, Doreen S.
Moura Costa, Pedro
Fiddes, Joel
Foody, Giles M.
van der Heijden, Geertje M. F.
Ledo, Alicia
Lincoln, Philippa R.
Margrove, James A.
Martin, Roberta E.
Milne, Sol
Pinard, Michelle A.
Reynolds, Glen
Snoep, Martijn
Tangki, Hamzah
Sau Wai, Yap
Wheeler, Charlotte E.
Burslem, David F. R. P.
description There is currently great interest in the capacity of global forest to store carbon and hence contribute to the mitigation of climate change in the coming decades. In a study of Southeast Asian tropical forest, Philipson et al. show that active restoration of logged forests generates higher rates of carbon accumulation than naturally regenerating forest. To estimate the economic feasibility of restoration treatments, they modeled the carbon price required to offset the cost of restoration, finding that the highest prices seen in recent years would be needed to approach those that could offset restoration costs. These results are important for tropical forest policy, establishing the importance of restoration for the carbon recovery potential of tropical forests. Science , this issue p. 838 Restoration of logged tropical forests will be incentivized by carbon prices, consistent with the 2016 Paris climate agreement. More than half of all tropical forests are degraded by human impacts, leaving them threatened with conversion to agricultural plantations and risking substantial biodiversity and carbon losses. Restoration could accelerate recovery of aboveground carbon density (ACD), but adoption of restoration is constrained by cost and uncertainties over effectiveness. We report a long-term comparison of ACD recovery rates between naturally regenerating and actively restored logged tropical forests. Restoration enhanced decadal ACD recovery by more than 50%, from 2.9 to 4.4 megagrams per hectare per year. This magnitude of response, coupled with modal values of restoration costs globally, would require higher carbon prices to justify investment in restoration. However, carbon prices required to fulfill the 2016 Paris climate agreement [$40 to $80 (USD) per tonne carbon dioxide equivalent] would provide an economic justification for tropical forest restoration.
doi_str_mv 10.1126/science.aay4490
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2434486226</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2434486226</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-29737bd525a4a08748ed62281bca5de80f61281824d995e150cf96cda1c8a863</originalsourceid><addsrcrecordid>eNpdkL1rwzAQxUVpoWnauaugSxc3kizb0hhCvyDQJZ3FRT4TBdtKJTuQ_75yk6nT8e5-vHs8Qh45e-FclItoHfYWXwBOUmp2RWac6SLTguXXZMZYXmaKVcUtuYtxz1i66XxGvpd2cEekAePgAwzO9xSsxRaTwEiHHVILYZvWAa0_YjhR39Dd2EGfdb52jcOaDsEfnIWWNn4yivfkpoE24sNlzsnm7XWz-sjWX--fq-U6s5LpIRO6yqttXYgCJDBVSYV1KYTiWwtFjYo1JU9KCVlrXSAvmG10aWvgVoEq8zl5Ptsegv8Z02PTuZiyt9CjH6MRMpdSJccJffqH7v0Y-hTuj-JsKihRizNlg48xYGMOwXUQToYzM7VsLi2bS8v5L9Occs4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434100036</pqid></control><display><type>article</type><title>Active restoration accelerates the carbon recovery of human-modified tropical forests</title><source>American Association for the Advancement of Science</source><creator>Philipson, Christopher D. ; Cutler, Mark E. J. ; Brodrick, Philip G. ; Asner, Gregory P. ; Boyd, Doreen S. ; Moura Costa, Pedro ; Fiddes, Joel ; Foody, Giles M. ; van der Heijden, Geertje M. F. ; Ledo, Alicia ; Lincoln, Philippa R. ; Margrove, James A. ; Martin, Roberta E. ; Milne, Sol ; Pinard, Michelle A. ; Reynolds, Glen ; Snoep, Martijn ; Tangki, Hamzah ; Sau Wai, Yap ; Wheeler, Charlotte E. ; Burslem, David F. R. P.</creator><creatorcontrib>Philipson, Christopher D. ; Cutler, Mark E. J. ; Brodrick, Philip G. ; Asner, Gregory P. ; Boyd, Doreen S. ; Moura Costa, Pedro ; Fiddes, Joel ; Foody, Giles M. ; van der Heijden, Geertje M. F. ; Ledo, Alicia ; Lincoln, Philippa R. ; Margrove, James A. ; Martin, Roberta E. ; Milne, Sol ; Pinard, Michelle A. ; Reynolds, Glen ; Snoep, Martijn ; Tangki, Hamzah ; Sau Wai, Yap ; Wheeler, Charlotte E. ; Burslem, David F. R. P.</creatorcontrib><description>There is currently great interest in the capacity of global forest to store carbon and hence contribute to the mitigation of climate change in the coming decades. In a study of Southeast Asian tropical forest, Philipson et al. show that active restoration of logged forests generates higher rates of carbon accumulation than naturally regenerating forest. To estimate the economic feasibility of restoration treatments, they modeled the carbon price required to offset the cost of restoration, finding that the highest prices seen in recent years would be needed to approach those that could offset restoration costs. These results are important for tropical forest policy, establishing the importance of restoration for the carbon recovery potential of tropical forests. Science , this issue p. 838 Restoration of logged tropical forests will be incentivized by carbon prices, consistent with the 2016 Paris climate agreement. More than half of all tropical forests are degraded by human impacts, leaving them threatened with conversion to agricultural plantations and risking substantial biodiversity and carbon losses. Restoration could accelerate recovery of aboveground carbon density (ACD), but adoption of restoration is constrained by cost and uncertainties over effectiveness. We report a long-term comparison of ACD recovery rates between naturally regenerating and actively restored logged tropical forests. Restoration enhanced decadal ACD recovery by more than 50%, from 2.9 to 4.4 megagrams per hectare per year. This magnitude of response, coupled with modal values of restoration costs globally, would require higher carbon prices to justify investment in restoration. However, carbon prices required to fulfill the 2016 Paris climate agreement [$40 to $80 (USD) per tonne carbon dioxide equivalent] would provide an economic justification for tropical forest restoration.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aay4490</identifier><language>eng</language><publisher>Washington: The American Association for the Advancement of Science</publisher><subject>Agricultural economics ; Biodiversity ; Carbon ; Carbon dioxide ; Climate change ; Costs ; Economic conditions ; Economic justification ; Economic models ; Forest management ; Forests ; Human influences ; Prices ; Recovery ; Restoration ; Tropical forests</subject><ispartof>Science (American Association for the Advancement of Science), 2020-08, Vol.369 (6505), p.838-841</ispartof><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-29737bd525a4a08748ed62281bca5de80f61281824d995e150cf96cda1c8a863</citedby><cites>FETCH-LOGICAL-c409t-29737bd525a4a08748ed62281bca5de80f61281824d995e150cf96cda1c8a863</cites><orcidid>0000-0001-7893-6421 ; 0000-0003-3040-552X ; 0000-0001-6464-3054 ; 0000-0002-2110-5173 ; 0000-0001-8987-7260 ; 0000-0001-6033-0990 ; 0000-0001-9497-7661 ; 0000-0002-4268-125X ; 0000-0002-3893-1068 ; 0000-0002-3967-6994 ; 0000-0002-7569-3660 ; 0000-0003-3509-8530</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2871,2872,27901,27902</link.rule.ids></links><search><creatorcontrib>Philipson, Christopher D.</creatorcontrib><creatorcontrib>Cutler, Mark E. J.</creatorcontrib><creatorcontrib>Brodrick, Philip G.</creatorcontrib><creatorcontrib>Asner, Gregory P.</creatorcontrib><creatorcontrib>Boyd, Doreen S.</creatorcontrib><creatorcontrib>Moura Costa, Pedro</creatorcontrib><creatorcontrib>Fiddes, Joel</creatorcontrib><creatorcontrib>Foody, Giles M.</creatorcontrib><creatorcontrib>van der Heijden, Geertje M. F.</creatorcontrib><creatorcontrib>Ledo, Alicia</creatorcontrib><creatorcontrib>Lincoln, Philippa R.</creatorcontrib><creatorcontrib>Margrove, James A.</creatorcontrib><creatorcontrib>Martin, Roberta E.</creatorcontrib><creatorcontrib>Milne, Sol</creatorcontrib><creatorcontrib>Pinard, Michelle A.</creatorcontrib><creatorcontrib>Reynolds, Glen</creatorcontrib><creatorcontrib>Snoep, Martijn</creatorcontrib><creatorcontrib>Tangki, Hamzah</creatorcontrib><creatorcontrib>Sau Wai, Yap</creatorcontrib><creatorcontrib>Wheeler, Charlotte E.</creatorcontrib><creatorcontrib>Burslem, David F. R. P.</creatorcontrib><title>Active restoration accelerates the carbon recovery of human-modified tropical forests</title><title>Science (American Association for the Advancement of Science)</title><description>There is currently great interest in the capacity of global forest to store carbon and hence contribute to the mitigation of climate change in the coming decades. In a study of Southeast Asian tropical forest, Philipson et al. show that active restoration of logged forests generates higher rates of carbon accumulation than naturally regenerating forest. To estimate the economic feasibility of restoration treatments, they modeled the carbon price required to offset the cost of restoration, finding that the highest prices seen in recent years would be needed to approach those that could offset restoration costs. These results are important for tropical forest policy, establishing the importance of restoration for the carbon recovery potential of tropical forests. Science , this issue p. 838 Restoration of logged tropical forests will be incentivized by carbon prices, consistent with the 2016 Paris climate agreement. More than half of all tropical forests are degraded by human impacts, leaving them threatened with conversion to agricultural plantations and risking substantial biodiversity and carbon losses. Restoration could accelerate recovery of aboveground carbon density (ACD), but adoption of restoration is constrained by cost and uncertainties over effectiveness. We report a long-term comparison of ACD recovery rates between naturally regenerating and actively restored logged tropical forests. Restoration enhanced decadal ACD recovery by more than 50%, from 2.9 to 4.4 megagrams per hectare per year. This magnitude of response, coupled with modal values of restoration costs globally, would require higher carbon prices to justify investment in restoration. However, carbon prices required to fulfill the 2016 Paris climate agreement [$40 to $80 (USD) per tonne carbon dioxide equivalent] would provide an economic justification for tropical forest restoration.</description><subject>Agricultural economics</subject><subject>Biodiversity</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Climate change</subject><subject>Costs</subject><subject>Economic conditions</subject><subject>Economic justification</subject><subject>Economic models</subject><subject>Forest management</subject><subject>Forests</subject><subject>Human influences</subject><subject>Prices</subject><subject>Recovery</subject><subject>Restoration</subject><subject>Tropical forests</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkL1rwzAQxUVpoWnauaugSxc3kizb0hhCvyDQJZ3FRT4TBdtKJTuQ_75yk6nT8e5-vHs8Qh45e-FclItoHfYWXwBOUmp2RWac6SLTguXXZMZYXmaKVcUtuYtxz1i66XxGvpd2cEekAePgAwzO9xSsxRaTwEiHHVILYZvWAa0_YjhR39Dd2EGfdb52jcOaDsEfnIWWNn4yivfkpoE24sNlzsnm7XWz-sjWX--fq-U6s5LpIRO6yqttXYgCJDBVSYV1KYTiWwtFjYo1JU9KCVlrXSAvmG10aWvgVoEq8zl5Ptsegv8Z02PTuZiyt9CjH6MRMpdSJccJffqH7v0Y-hTuj-JsKihRizNlg48xYGMOwXUQToYzM7VsLi2bS8v5L9Occs4</recordid><startdate>20200814</startdate><enddate>20200814</enddate><creator>Philipson, Christopher D.</creator><creator>Cutler, Mark E. J.</creator><creator>Brodrick, Philip G.</creator><creator>Asner, Gregory P.</creator><creator>Boyd, Doreen S.</creator><creator>Moura Costa, Pedro</creator><creator>Fiddes, Joel</creator><creator>Foody, Giles M.</creator><creator>van der Heijden, Geertje M. F.</creator><creator>Ledo, Alicia</creator><creator>Lincoln, Philippa R.</creator><creator>Margrove, James A.</creator><creator>Martin, Roberta E.</creator><creator>Milne, Sol</creator><creator>Pinard, Michelle A.</creator><creator>Reynolds, Glen</creator><creator>Snoep, Martijn</creator><creator>Tangki, Hamzah</creator><creator>Sau Wai, Yap</creator><creator>Wheeler, Charlotte E.</creator><creator>Burslem, David F. R. P.</creator><general>The American Association for the Advancement of Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7893-6421</orcidid><orcidid>https://orcid.org/0000-0003-3040-552X</orcidid><orcidid>https://orcid.org/0000-0001-6464-3054</orcidid><orcidid>https://orcid.org/0000-0002-2110-5173</orcidid><orcidid>https://orcid.org/0000-0001-8987-7260</orcidid><orcidid>https://orcid.org/0000-0001-6033-0990</orcidid><orcidid>https://orcid.org/0000-0001-9497-7661</orcidid><orcidid>https://orcid.org/0000-0002-4268-125X</orcidid><orcidid>https://orcid.org/0000-0002-3893-1068</orcidid><orcidid>https://orcid.org/0000-0002-3967-6994</orcidid><orcidid>https://orcid.org/0000-0002-7569-3660</orcidid><orcidid>https://orcid.org/0000-0003-3509-8530</orcidid></search><sort><creationdate>20200814</creationdate><title>Active restoration accelerates the carbon recovery of human-modified tropical forests</title><author>Philipson, Christopher D. ; Cutler, Mark E. J. ; Brodrick, Philip G. ; Asner, Gregory P. ; Boyd, Doreen S. ; Moura Costa, Pedro ; Fiddes, Joel ; Foody, Giles M. ; van der Heijden, Geertje M. F. ; Ledo, Alicia ; Lincoln, Philippa R. ; Margrove, James A. ; Martin, Roberta E. ; Milne, Sol ; Pinard, Michelle A. ; Reynolds, Glen ; Snoep, Martijn ; Tangki, Hamzah ; Sau Wai, Yap ; Wheeler, Charlotte E. ; Burslem, David F. R. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-29737bd525a4a08748ed62281bca5de80f61281824d995e150cf96cda1c8a863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agricultural economics</topic><topic>Biodiversity</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Climate change</topic><topic>Costs</topic><topic>Economic conditions</topic><topic>Economic justification</topic><topic>Economic models</topic><topic>Forest management</topic><topic>Forests</topic><topic>Human influences</topic><topic>Prices</topic><topic>Recovery</topic><topic>Restoration</topic><topic>Tropical forests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Philipson, Christopher D.</creatorcontrib><creatorcontrib>Cutler, Mark E. J.</creatorcontrib><creatorcontrib>Brodrick, Philip G.</creatorcontrib><creatorcontrib>Asner, Gregory P.</creatorcontrib><creatorcontrib>Boyd, Doreen S.</creatorcontrib><creatorcontrib>Moura Costa, Pedro</creatorcontrib><creatorcontrib>Fiddes, Joel</creatorcontrib><creatorcontrib>Foody, Giles M.</creatorcontrib><creatorcontrib>van der Heijden, Geertje M. F.</creatorcontrib><creatorcontrib>Ledo, Alicia</creatorcontrib><creatorcontrib>Lincoln, Philippa R.</creatorcontrib><creatorcontrib>Margrove, James A.</creatorcontrib><creatorcontrib>Martin, Roberta E.</creatorcontrib><creatorcontrib>Milne, Sol</creatorcontrib><creatorcontrib>Pinard, Michelle A.</creatorcontrib><creatorcontrib>Reynolds, Glen</creatorcontrib><creatorcontrib>Snoep, Martijn</creatorcontrib><creatorcontrib>Tangki, Hamzah</creatorcontrib><creatorcontrib>Sau Wai, Yap</creatorcontrib><creatorcontrib>Wheeler, Charlotte E.</creatorcontrib><creatorcontrib>Burslem, David F. R. P.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Philipson, Christopher D.</au><au>Cutler, Mark E. J.</au><au>Brodrick, Philip G.</au><au>Asner, Gregory P.</au><au>Boyd, Doreen S.</au><au>Moura Costa, Pedro</au><au>Fiddes, Joel</au><au>Foody, Giles M.</au><au>van der Heijden, Geertje M. F.</au><au>Ledo, Alicia</au><au>Lincoln, Philippa R.</au><au>Margrove, James A.</au><au>Martin, Roberta E.</au><au>Milne, Sol</au><au>Pinard, Michelle A.</au><au>Reynolds, Glen</au><au>Snoep, Martijn</au><au>Tangki, Hamzah</au><au>Sau Wai, Yap</au><au>Wheeler, Charlotte E.</au><au>Burslem, David F. R. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Active restoration accelerates the carbon recovery of human-modified tropical forests</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><date>2020-08-14</date><risdate>2020</risdate><volume>369</volume><issue>6505</issue><spage>838</spage><epage>841</epage><pages>838-841</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>There is currently great interest in the capacity of global forest to store carbon and hence contribute to the mitigation of climate change in the coming decades. In a study of Southeast Asian tropical forest, Philipson et al. show that active restoration of logged forests generates higher rates of carbon accumulation than naturally regenerating forest. To estimate the economic feasibility of restoration treatments, they modeled the carbon price required to offset the cost of restoration, finding that the highest prices seen in recent years would be needed to approach those that could offset restoration costs. These results are important for tropical forest policy, establishing the importance of restoration for the carbon recovery potential of tropical forests. Science , this issue p. 838 Restoration of logged tropical forests will be incentivized by carbon prices, consistent with the 2016 Paris climate agreement. More than half of all tropical forests are degraded by human impacts, leaving them threatened with conversion to agricultural plantations and risking substantial biodiversity and carbon losses. Restoration could accelerate recovery of aboveground carbon density (ACD), but adoption of restoration is constrained by cost and uncertainties over effectiveness. We report a long-term comparison of ACD recovery rates between naturally regenerating and actively restored logged tropical forests. Restoration enhanced decadal ACD recovery by more than 50%, from 2.9 to 4.4 megagrams per hectare per year. This magnitude of response, coupled with modal values of restoration costs globally, would require higher carbon prices to justify investment in restoration. However, carbon prices required to fulfill the 2016 Paris climate agreement [$40 to $80 (USD) per tonne carbon dioxide equivalent] would provide an economic justification for tropical forest restoration.</abstract><cop>Washington</cop><pub>The American Association for the Advancement of Science</pub><doi>10.1126/science.aay4490</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-7893-6421</orcidid><orcidid>https://orcid.org/0000-0003-3040-552X</orcidid><orcidid>https://orcid.org/0000-0001-6464-3054</orcidid><orcidid>https://orcid.org/0000-0002-2110-5173</orcidid><orcidid>https://orcid.org/0000-0001-8987-7260</orcidid><orcidid>https://orcid.org/0000-0001-6033-0990</orcidid><orcidid>https://orcid.org/0000-0001-9497-7661</orcidid><orcidid>https://orcid.org/0000-0002-4268-125X</orcidid><orcidid>https://orcid.org/0000-0002-3893-1068</orcidid><orcidid>https://orcid.org/0000-0002-3967-6994</orcidid><orcidid>https://orcid.org/0000-0002-7569-3660</orcidid><orcidid>https://orcid.org/0000-0003-3509-8530</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2020-08, Vol.369 (6505), p.838-841
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_2434486226
source American Association for the Advancement of Science
subjects Agricultural economics
Biodiversity
Carbon
Carbon dioxide
Climate change
Costs
Economic conditions
Economic justification
Economic models
Forest management
Forests
Human influences
Prices
Recovery
Restoration
Tropical forests
title Active restoration accelerates the carbon recovery of human-modified tropical forests
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T00%3A17%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Active%20restoration%20accelerates%20the%20carbon%20recovery%20of%20human-modified%20tropical%20forests&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Philipson,%20Christopher%20D.&rft.date=2020-08-14&rft.volume=369&rft.issue=6505&rft.spage=838&rft.epage=841&rft.pages=838-841&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aay4490&rft_dat=%3Cproquest_cross%3E2434486226%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2434100036&rft_id=info:pmid/&rfr_iscdi=true