Reformulation of the Cosmological Constant Problem

The standard formulation of the cosmological constant problem is based on one critical assumption-the spacetime is homogeneous and isotropic, which is true only on cosmological scales. However, this problem is caused by extremely small scale (Planck scale) quantum fluctuations and, at that scale, th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2020-07, Vol.125 (5), p.1-051301, Article 051301
1. Verfasser: Wang, Qingdi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 051301
container_issue 5
container_start_page 1
container_title Physical review letters
container_volume 125
creator Wang, Qingdi
description The standard formulation of the cosmological constant problem is based on one critical assumption-the spacetime is homogeneous and isotropic, which is true only on cosmological scales. However, this problem is caused by extremely small scale (Planck scale) quantum fluctuations and, at that scale, the spacetime is highly inhomogeneous and anisotropic. The homogeneous Friedmann-Lemaître-Robertson-Walker metric used in the standard formulation is inadequate to describe such small scale dynamics of the spacetime. In this Letter, we reformulate the cosmological constant problem by using a general inhomogeneous metric. The fine-tuning problem does not arise in the reformulation since the large gravitational effect of the quantum vacuum is hidden by small scale spacetime fluctuations. The stress energy tensor fluctuations of the quantum fields vacuum could serve as "dark energy" to drive the accelerating expansion of the Universe through a weak parametric resonance effect.
doi_str_mv 10.1103/PhysRevLett.125.051301
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2434480677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2434480677</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-1eda674bf9b504cbe102742c91a52f9fdb7b5a142b34ab96a84576f52362c8033</originalsourceid><addsrcrecordid>eNpd0FFLwzAQwPEgCs7pV5CCL7503iVp0j7K0CkMHEOfQ9IlrqNtZpIK-_Z2zAfx6Tj4cRx_Qm4RZojAHlbbQ1zb76VNaYa0mEGBDPCMTBBklUtEfk4mAAzzCkBekqsYdwCAVJQTQtfW-dANrU6N7zPvsrS12dzHzrf-s6l1Oy59TLpP2Sp409rumlw43UZ78zun5OP56X3-ki_fFq_zx2VeMxQpR7vRQnLjKlMAr41FoJLTukJdUFe5jZGm0MipYVybSuiSF1K4gjJB6xIYm5L709198F-DjUl1Taxt2-re-iEqyhnnJQgpR3r3j-78EPrxu6OSWAqORyVOqg4-xmCd2oem0-GgENQxpfqTUo0p1Skl-wFnTmjE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2437186417</pqid></control><display><type>article</type><title>Reformulation of the Cosmological Constant Problem</title><source>American Physical Society Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Wang, Qingdi</creator><creatorcontrib>Wang, Qingdi</creatorcontrib><description>The standard formulation of the cosmological constant problem is based on one critical assumption-the spacetime is homogeneous and isotropic, which is true only on cosmological scales. However, this problem is caused by extremely small scale (Planck scale) quantum fluctuations and, at that scale, the spacetime is highly inhomogeneous and anisotropic. The homogeneous Friedmann-Lemaître-Robertson-Walker metric used in the standard formulation is inadequate to describe such small scale dynamics of the spacetime. In this Letter, we reformulate the cosmological constant problem by using a general inhomogeneous metric. The fine-tuning problem does not arise in the reformulation since the large gravitational effect of the quantum vacuum is hidden by small scale spacetime fluctuations. The stress energy tensor fluctuations of the quantum fields vacuum could serve as "dark energy" to drive the accelerating expansion of the Universe through a weak parametric resonance effect.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.125.051301</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Cosmological constant ; Dark energy ; Expanding universe theory ; Gravitational effects ; Relativity ; Spacetime ; Tensors</subject><ispartof>Physical review letters, 2020-07, Vol.125 (5), p.1-051301, Article 051301</ispartof><rights>Copyright American Physical Society Jul 31, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-1eda674bf9b504cbe102742c91a52f9fdb7b5a142b34ab96a84576f52362c8033</citedby><cites>FETCH-LOGICAL-c316t-1eda674bf9b504cbe102742c91a52f9fdb7b5a142b34ab96a84576f52362c8033</cites><orcidid>0000-0003-4157-1603</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2874,2875,27923,27924</link.rule.ids></links><search><creatorcontrib>Wang, Qingdi</creatorcontrib><title>Reformulation of the Cosmological Constant Problem</title><title>Physical review letters</title><description>The standard formulation of the cosmological constant problem is based on one critical assumption-the spacetime is homogeneous and isotropic, which is true only on cosmological scales. However, this problem is caused by extremely small scale (Planck scale) quantum fluctuations and, at that scale, the spacetime is highly inhomogeneous and anisotropic. The homogeneous Friedmann-Lemaître-Robertson-Walker metric used in the standard formulation is inadequate to describe such small scale dynamics of the spacetime. In this Letter, we reformulate the cosmological constant problem by using a general inhomogeneous metric. The fine-tuning problem does not arise in the reformulation since the large gravitational effect of the quantum vacuum is hidden by small scale spacetime fluctuations. The stress energy tensor fluctuations of the quantum fields vacuum could serve as "dark energy" to drive the accelerating expansion of the Universe through a weak parametric resonance effect.</description><subject>Cosmological constant</subject><subject>Dark energy</subject><subject>Expanding universe theory</subject><subject>Gravitational effects</subject><subject>Relativity</subject><subject>Spacetime</subject><subject>Tensors</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpd0FFLwzAQwPEgCs7pV5CCL7503iVp0j7K0CkMHEOfQ9IlrqNtZpIK-_Z2zAfx6Tj4cRx_Qm4RZojAHlbbQ1zb76VNaYa0mEGBDPCMTBBklUtEfk4mAAzzCkBekqsYdwCAVJQTQtfW-dANrU6N7zPvsrS12dzHzrf-s6l1Oy59TLpP2Sp409rumlw43UZ78zun5OP56X3-ki_fFq_zx2VeMxQpR7vRQnLjKlMAr41FoJLTukJdUFe5jZGm0MipYVybSuiSF1K4gjJB6xIYm5L709198F-DjUl1Taxt2-re-iEqyhnnJQgpR3r3j-78EPrxu6OSWAqORyVOqg4-xmCd2oem0-GgENQxpfqTUo0p1Skl-wFnTmjE</recordid><startdate>20200731</startdate><enddate>20200731</enddate><creator>Wang, Qingdi</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4157-1603</orcidid></search><sort><creationdate>20200731</creationdate><title>Reformulation of the Cosmological Constant Problem</title><author>Wang, Qingdi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-1eda674bf9b504cbe102742c91a52f9fdb7b5a142b34ab96a84576f52362c8033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cosmological constant</topic><topic>Dark energy</topic><topic>Expanding universe theory</topic><topic>Gravitational effects</topic><topic>Relativity</topic><topic>Spacetime</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Qingdi</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Qingdi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reformulation of the Cosmological Constant Problem</atitle><jtitle>Physical review letters</jtitle><date>2020-07-31</date><risdate>2020</risdate><volume>125</volume><issue>5</issue><spage>1</spage><epage>051301</epage><pages>1-051301</pages><artnum>051301</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>The standard formulation of the cosmological constant problem is based on one critical assumption-the spacetime is homogeneous and isotropic, which is true only on cosmological scales. However, this problem is caused by extremely small scale (Planck scale) quantum fluctuations and, at that scale, the spacetime is highly inhomogeneous and anisotropic. The homogeneous Friedmann-Lemaître-Robertson-Walker metric used in the standard formulation is inadequate to describe such small scale dynamics of the spacetime. In this Letter, we reformulate the cosmological constant problem by using a general inhomogeneous metric. The fine-tuning problem does not arise in the reformulation since the large gravitational effect of the quantum vacuum is hidden by small scale spacetime fluctuations. The stress energy tensor fluctuations of the quantum fields vacuum could serve as "dark energy" to drive the accelerating expansion of the Universe through a weak parametric resonance effect.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevLett.125.051301</doi><orcidid>https://orcid.org/0000-0003-4157-1603</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2020-07, Vol.125 (5), p.1-051301, Article 051301
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_2434480677
source American Physical Society Journals; EZB-FREE-00999 freely available EZB journals
subjects Cosmological constant
Dark energy
Expanding universe theory
Gravitational effects
Relativity
Spacetime
Tensors
title Reformulation of the Cosmological Constant Problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T10%3A58%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reformulation%20of%20the%20Cosmological%20Constant%20Problem&rft.jtitle=Physical%20review%20letters&rft.au=Wang,%20Qingdi&rft.date=2020-07-31&rft.volume=125&rft.issue=5&rft.spage=1&rft.epage=051301&rft.pages=1-051301&rft.artnum=051301&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.125.051301&rft_dat=%3Cproquest_cross%3E2434480677%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2437186417&rft_id=info:pmid/&rfr_iscdi=true