Sub-bandgap photoexcited dynamics at an organic donor/acceptor photovoltaic interface
Although sub-bandgap light absorption signals in organic donor/acceptor (D/A) photovoltaic systems have been studied extensively, the underlying origins, as well as the impacting factors, are still elusive. By theoretically constructing an organic D/A interface under a femtosecond electric pulse pum...
Gespeichert in:
Veröffentlicht in: | Optics letters 2020-08, Vol.45 (16), p.4492-4495 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4495 |
---|---|
container_issue | 16 |
container_start_page | 4492 |
container_title | Optics letters |
container_volume | 45 |
creator | Zhang, Maomao Lu, Qiuxia Qu, Fanyao Gao, Kun |
description | Although sub-bandgap light absorption signals in organic donor/acceptor (D/A) photovoltaic systems have been studied extensively, the underlying origins, as well as the impacting factors, are still elusive. By theoretically constructing an organic D/A interface under a femtosecond electric pulse pumping, we obtain an insightful understanding of this issue. First, a careful comparison between the absorption spectra of the D/A interface and the individual donor (acceptor) demonstrates the existence of two weak absorption signals below the donor (acceptor) optical gap. Furthermore, we clarify that the lower-energy signal originates from “cold” charge transfer (CT) absorption, while the higher-energy signal is from “hot” CT absorption. Finally, effects of several key factors, such as the interface structure and the photoexciting condition, on CT absorptions are discussed. These findings should be of vital importance both to understand the sub-bandgap excited states and to recognize their roles in organic photovoltaic devices. |
doi_str_mv | 10.1364/OL.398771 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2434475361</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2440104418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c290t-3ab21b7015179374a295e8468523bf82ab1541def4b490ece29860b502dc42453</originalsourceid><addsrcrecordid>eNpd0D1PwzAQBmALgUQpDPyDSCwwhPrjHMcjqviSInWAzpHtOCVVagfbQfTfExQmphvueU-nF6Frgu8JK2C1qe6ZLIUgJ2hBOJM5CAmnaIEJFLnkkp6jixj3GONCMLZA27dR51q5ZqeGbPjwydtv0yXbZM3RqUNnYqZSplzmw065zmSNdz6slDF2SD7MkS_fJzXtOpdsaJWxl-isVX20V39zibZPj-_rl7zaPL-uH6rcUIlTzpSmRAtMOBGSCVBUcltCUXLKdFtSpQkH0tgWNEhsjaWyLLDmmDYGKHC2RLfz3SH4z9HGVB-6aGzfK2f9GGsKDEBwVpCJ3vyjez8GN303KcAEA5ByUnezMsHHGGxbD6E7qHCsCa5_C643VT0XzH4Axf9sbg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440104418</pqid></control><display><type>article</type><title>Sub-bandgap photoexcited dynamics at an organic donor/acceptor photovoltaic interface</title><source>Optica Publishing Group Journals</source><creator>Zhang, Maomao ; Lu, Qiuxia ; Qu, Fanyao ; Gao, Kun</creator><creatorcontrib>Zhang, Maomao ; Lu, Qiuxia ; Qu, Fanyao ; Gao, Kun</creatorcontrib><description>Although sub-bandgap light absorption signals in organic donor/acceptor (D/A) photovoltaic systems have been studied extensively, the underlying origins, as well as the impacting factors, are still elusive. By theoretically constructing an organic D/A interface under a femtosecond electric pulse pumping, we obtain an insightful understanding of this issue. First, a careful comparison between the absorption spectra of the D/A interface and the individual donor (acceptor) demonstrates the existence of two weak absorption signals below the donor (acceptor) optical gap. Furthermore, we clarify that the lower-energy signal originates from “cold” charge transfer (CT) absorption, while the higher-energy signal is from “hot” CT absorption. Finally, effects of several key factors, such as the interface structure and the photoexciting condition, on CT absorptions are discussed. These findings should be of vital importance both to understand the sub-bandgap excited states and to recognize their roles in organic photovoltaic devices.</description><identifier>ISSN: 0146-9592</identifier><identifier>EISSN: 1539-4794</identifier><identifier>DOI: 10.1364/OL.398771</identifier><language>eng</language><publisher>Washington: Optical Society of America</publisher><subject>Absorption spectra ; Charge transfer ; Electromagnetic absorption ; Energy gap ; Femtosecond pulses ; Photovoltaic cells</subject><ispartof>Optics letters, 2020-08, Vol.45 (16), p.4492-4495</ispartof><rights>Copyright Optical Society of America Aug 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c290t-3ab21b7015179374a295e8468523bf82ab1541def4b490ece29860b502dc42453</citedby><cites>FETCH-LOGICAL-c290t-3ab21b7015179374a295e8468523bf82ab1541def4b490ece29860b502dc42453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3244,27903,27904</link.rule.ids></links><search><creatorcontrib>Zhang, Maomao</creatorcontrib><creatorcontrib>Lu, Qiuxia</creatorcontrib><creatorcontrib>Qu, Fanyao</creatorcontrib><creatorcontrib>Gao, Kun</creatorcontrib><title>Sub-bandgap photoexcited dynamics at an organic donor/acceptor photovoltaic interface</title><title>Optics letters</title><description>Although sub-bandgap light absorption signals in organic donor/acceptor (D/A) photovoltaic systems have been studied extensively, the underlying origins, as well as the impacting factors, are still elusive. By theoretically constructing an organic D/A interface under a femtosecond electric pulse pumping, we obtain an insightful understanding of this issue. First, a careful comparison between the absorption spectra of the D/A interface and the individual donor (acceptor) demonstrates the existence of two weak absorption signals below the donor (acceptor) optical gap. Furthermore, we clarify that the lower-energy signal originates from “cold” charge transfer (CT) absorption, while the higher-energy signal is from “hot” CT absorption. Finally, effects of several key factors, such as the interface structure and the photoexciting condition, on CT absorptions are discussed. These findings should be of vital importance both to understand the sub-bandgap excited states and to recognize their roles in organic photovoltaic devices.</description><subject>Absorption spectra</subject><subject>Charge transfer</subject><subject>Electromagnetic absorption</subject><subject>Energy gap</subject><subject>Femtosecond pulses</subject><subject>Photovoltaic cells</subject><issn>0146-9592</issn><issn>1539-4794</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpd0D1PwzAQBmALgUQpDPyDSCwwhPrjHMcjqviSInWAzpHtOCVVagfbQfTfExQmphvueU-nF6Frgu8JK2C1qe6ZLIUgJ2hBOJM5CAmnaIEJFLnkkp6jixj3GONCMLZA27dR51q5ZqeGbPjwydtv0yXbZM3RqUNnYqZSplzmw065zmSNdz6slDF2SD7MkS_fJzXtOpdsaJWxl-isVX20V39zibZPj-_rl7zaPL-uH6rcUIlTzpSmRAtMOBGSCVBUcltCUXLKdFtSpQkH0tgWNEhsjaWyLLDmmDYGKHC2RLfz3SH4z9HGVB-6aGzfK2f9GGsKDEBwVpCJ3vyjez8GN303KcAEA5ByUnezMsHHGGxbD6E7qHCsCa5_C643VT0XzH4Axf9sbg</recordid><startdate>20200815</startdate><enddate>20200815</enddate><creator>Zhang, Maomao</creator><creator>Lu, Qiuxia</creator><creator>Qu, Fanyao</creator><creator>Gao, Kun</creator><general>Optical Society of America</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20200815</creationdate><title>Sub-bandgap photoexcited dynamics at an organic donor/acceptor photovoltaic interface</title><author>Zhang, Maomao ; Lu, Qiuxia ; Qu, Fanyao ; Gao, Kun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c290t-3ab21b7015179374a295e8468523bf82ab1541def4b490ece29860b502dc42453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Absorption spectra</topic><topic>Charge transfer</topic><topic>Electromagnetic absorption</topic><topic>Energy gap</topic><topic>Femtosecond pulses</topic><topic>Photovoltaic cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Maomao</creatorcontrib><creatorcontrib>Lu, Qiuxia</creatorcontrib><creatorcontrib>Qu, Fanyao</creatorcontrib><creatorcontrib>Gao, Kun</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Optics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Maomao</au><au>Lu, Qiuxia</au><au>Qu, Fanyao</au><au>Gao, Kun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sub-bandgap photoexcited dynamics at an organic donor/acceptor photovoltaic interface</atitle><jtitle>Optics letters</jtitle><date>2020-08-15</date><risdate>2020</risdate><volume>45</volume><issue>16</issue><spage>4492</spage><epage>4495</epage><pages>4492-4495</pages><issn>0146-9592</issn><eissn>1539-4794</eissn><abstract>Although sub-bandgap light absorption signals in organic donor/acceptor (D/A) photovoltaic systems have been studied extensively, the underlying origins, as well as the impacting factors, are still elusive. By theoretically constructing an organic D/A interface under a femtosecond electric pulse pumping, we obtain an insightful understanding of this issue. First, a careful comparison between the absorption spectra of the D/A interface and the individual donor (acceptor) demonstrates the existence of two weak absorption signals below the donor (acceptor) optical gap. Furthermore, we clarify that the lower-energy signal originates from “cold” charge transfer (CT) absorption, while the higher-energy signal is from “hot” CT absorption. Finally, effects of several key factors, such as the interface structure and the photoexciting condition, on CT absorptions are discussed. These findings should be of vital importance both to understand the sub-bandgap excited states and to recognize their roles in organic photovoltaic devices.</abstract><cop>Washington</cop><pub>Optical Society of America</pub><doi>10.1364/OL.398771</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0146-9592 |
ispartof | Optics letters, 2020-08, Vol.45 (16), p.4492-4495 |
issn | 0146-9592 1539-4794 |
language | eng |
recordid | cdi_proquest_miscellaneous_2434475361 |
source | Optica Publishing Group Journals |
subjects | Absorption spectra Charge transfer Electromagnetic absorption Energy gap Femtosecond pulses Photovoltaic cells |
title | Sub-bandgap photoexcited dynamics at an organic donor/acceptor photovoltaic interface |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T14%3A29%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sub-bandgap%20photoexcited%20dynamics%20at%20an%20organic%20donor/acceptor%20photovoltaic%20interface&rft.jtitle=Optics%20letters&rft.au=Zhang,%20Maomao&rft.date=2020-08-15&rft.volume=45&rft.issue=16&rft.spage=4492&rft.epage=4495&rft.pages=4492-4495&rft.issn=0146-9592&rft.eissn=1539-4794&rft_id=info:doi/10.1364/OL.398771&rft_dat=%3Cproquest_cross%3E2440104418%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440104418&rft_id=info:pmid/&rfr_iscdi=true |