Sub-bandgap photoexcited dynamics at an organic donor/acceptor photovoltaic interface

Although sub-bandgap light absorption signals in organic donor/acceptor (D/A) photovoltaic systems have been studied extensively, the underlying origins, as well as the impacting factors, are still elusive. By theoretically constructing an organic D/A interface under a femtosecond electric pulse pum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics letters 2020-08, Vol.45 (16), p.4492-4495
Hauptverfasser: Zhang, Maomao, Lu, Qiuxia, Qu, Fanyao, Gao, Kun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4495
container_issue 16
container_start_page 4492
container_title Optics letters
container_volume 45
creator Zhang, Maomao
Lu, Qiuxia
Qu, Fanyao
Gao, Kun
description Although sub-bandgap light absorption signals in organic donor/acceptor (D/A) photovoltaic systems have been studied extensively, the underlying origins, as well as the impacting factors, are still elusive. By theoretically constructing an organic D/A interface under a femtosecond electric pulse pumping, we obtain an insightful understanding of this issue. First, a careful comparison between the absorption spectra of the D/A interface and the individual donor (acceptor) demonstrates the existence of two weak absorption signals below the donor (acceptor) optical gap. Furthermore, we clarify that the lower-energy signal originates from “cold” charge transfer (CT) absorption, while the higher-energy signal is from “hot” CT absorption. Finally, effects of several key factors, such as the interface structure and the photoexciting condition, on CT absorptions are discussed. These findings should be of vital importance both to understand the sub-bandgap excited states and to recognize their roles in organic photovoltaic devices.
doi_str_mv 10.1364/OL.398771
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2434475361</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2440104418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c290t-3ab21b7015179374a295e8468523bf82ab1541def4b490ece29860b502dc42453</originalsourceid><addsrcrecordid>eNpd0D1PwzAQBmALgUQpDPyDSCwwhPrjHMcjqviSInWAzpHtOCVVagfbQfTfExQmphvueU-nF6Frgu8JK2C1qe6ZLIUgJ2hBOJM5CAmnaIEJFLnkkp6jixj3GONCMLZA27dR51q5ZqeGbPjwydtv0yXbZM3RqUNnYqZSplzmw065zmSNdz6slDF2SD7MkS_fJzXtOpdsaJWxl-isVX20V39zibZPj-_rl7zaPL-uH6rcUIlTzpSmRAtMOBGSCVBUcltCUXLKdFtSpQkH0tgWNEhsjaWyLLDmmDYGKHC2RLfz3SH4z9HGVB-6aGzfK2f9GGsKDEBwVpCJ3vyjez8GN303KcAEA5ByUnezMsHHGGxbD6E7qHCsCa5_C643VT0XzH4Axf9sbg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440104418</pqid></control><display><type>article</type><title>Sub-bandgap photoexcited dynamics at an organic donor/acceptor photovoltaic interface</title><source>Optica Publishing Group Journals</source><creator>Zhang, Maomao ; Lu, Qiuxia ; Qu, Fanyao ; Gao, Kun</creator><creatorcontrib>Zhang, Maomao ; Lu, Qiuxia ; Qu, Fanyao ; Gao, Kun</creatorcontrib><description>Although sub-bandgap light absorption signals in organic donor/acceptor (D/A) photovoltaic systems have been studied extensively, the underlying origins, as well as the impacting factors, are still elusive. By theoretically constructing an organic D/A interface under a femtosecond electric pulse pumping, we obtain an insightful understanding of this issue. First, a careful comparison between the absorption spectra of the D/A interface and the individual donor (acceptor) demonstrates the existence of two weak absorption signals below the donor (acceptor) optical gap. Furthermore, we clarify that the lower-energy signal originates from “cold” charge transfer (CT) absorption, while the higher-energy signal is from “hot” CT absorption. Finally, effects of several key factors, such as the interface structure and the photoexciting condition, on CT absorptions are discussed. These findings should be of vital importance both to understand the sub-bandgap excited states and to recognize their roles in organic photovoltaic devices.</description><identifier>ISSN: 0146-9592</identifier><identifier>EISSN: 1539-4794</identifier><identifier>DOI: 10.1364/OL.398771</identifier><language>eng</language><publisher>Washington: Optical Society of America</publisher><subject>Absorption spectra ; Charge transfer ; Electromagnetic absorption ; Energy gap ; Femtosecond pulses ; Photovoltaic cells</subject><ispartof>Optics letters, 2020-08, Vol.45 (16), p.4492-4495</ispartof><rights>Copyright Optical Society of America Aug 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c290t-3ab21b7015179374a295e8468523bf82ab1541def4b490ece29860b502dc42453</citedby><cites>FETCH-LOGICAL-c290t-3ab21b7015179374a295e8468523bf82ab1541def4b490ece29860b502dc42453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3244,27903,27904</link.rule.ids></links><search><creatorcontrib>Zhang, Maomao</creatorcontrib><creatorcontrib>Lu, Qiuxia</creatorcontrib><creatorcontrib>Qu, Fanyao</creatorcontrib><creatorcontrib>Gao, Kun</creatorcontrib><title>Sub-bandgap photoexcited dynamics at an organic donor/acceptor photovoltaic interface</title><title>Optics letters</title><description>Although sub-bandgap light absorption signals in organic donor/acceptor (D/A) photovoltaic systems have been studied extensively, the underlying origins, as well as the impacting factors, are still elusive. By theoretically constructing an organic D/A interface under a femtosecond electric pulse pumping, we obtain an insightful understanding of this issue. First, a careful comparison between the absorption spectra of the D/A interface and the individual donor (acceptor) demonstrates the existence of two weak absorption signals below the donor (acceptor) optical gap. Furthermore, we clarify that the lower-energy signal originates from “cold” charge transfer (CT) absorption, while the higher-energy signal is from “hot” CT absorption. Finally, effects of several key factors, such as the interface structure and the photoexciting condition, on CT absorptions are discussed. These findings should be of vital importance both to understand the sub-bandgap excited states and to recognize their roles in organic photovoltaic devices.</description><subject>Absorption spectra</subject><subject>Charge transfer</subject><subject>Electromagnetic absorption</subject><subject>Energy gap</subject><subject>Femtosecond pulses</subject><subject>Photovoltaic cells</subject><issn>0146-9592</issn><issn>1539-4794</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpd0D1PwzAQBmALgUQpDPyDSCwwhPrjHMcjqviSInWAzpHtOCVVagfbQfTfExQmphvueU-nF6Frgu8JK2C1qe6ZLIUgJ2hBOJM5CAmnaIEJFLnkkp6jixj3GONCMLZA27dR51q5ZqeGbPjwydtv0yXbZM3RqUNnYqZSplzmw065zmSNdz6slDF2SD7MkS_fJzXtOpdsaJWxl-isVX20V39zibZPj-_rl7zaPL-uH6rcUIlTzpSmRAtMOBGSCVBUcltCUXLKdFtSpQkH0tgWNEhsjaWyLLDmmDYGKHC2RLfz3SH4z9HGVB-6aGzfK2f9GGsKDEBwVpCJ3vyjez8GN303KcAEA5ByUnezMsHHGGxbD6E7qHCsCa5_C643VT0XzH4Axf9sbg</recordid><startdate>20200815</startdate><enddate>20200815</enddate><creator>Zhang, Maomao</creator><creator>Lu, Qiuxia</creator><creator>Qu, Fanyao</creator><creator>Gao, Kun</creator><general>Optical Society of America</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20200815</creationdate><title>Sub-bandgap photoexcited dynamics at an organic donor/acceptor photovoltaic interface</title><author>Zhang, Maomao ; Lu, Qiuxia ; Qu, Fanyao ; Gao, Kun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c290t-3ab21b7015179374a295e8468523bf82ab1541def4b490ece29860b502dc42453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Absorption spectra</topic><topic>Charge transfer</topic><topic>Electromagnetic absorption</topic><topic>Energy gap</topic><topic>Femtosecond pulses</topic><topic>Photovoltaic cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Maomao</creatorcontrib><creatorcontrib>Lu, Qiuxia</creatorcontrib><creatorcontrib>Qu, Fanyao</creatorcontrib><creatorcontrib>Gao, Kun</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Optics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Maomao</au><au>Lu, Qiuxia</au><au>Qu, Fanyao</au><au>Gao, Kun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sub-bandgap photoexcited dynamics at an organic donor/acceptor photovoltaic interface</atitle><jtitle>Optics letters</jtitle><date>2020-08-15</date><risdate>2020</risdate><volume>45</volume><issue>16</issue><spage>4492</spage><epage>4495</epage><pages>4492-4495</pages><issn>0146-9592</issn><eissn>1539-4794</eissn><abstract>Although sub-bandgap light absorption signals in organic donor/acceptor (D/A) photovoltaic systems have been studied extensively, the underlying origins, as well as the impacting factors, are still elusive. By theoretically constructing an organic D/A interface under a femtosecond electric pulse pumping, we obtain an insightful understanding of this issue. First, a careful comparison between the absorption spectra of the D/A interface and the individual donor (acceptor) demonstrates the existence of two weak absorption signals below the donor (acceptor) optical gap. Furthermore, we clarify that the lower-energy signal originates from “cold” charge transfer (CT) absorption, while the higher-energy signal is from “hot” CT absorption. Finally, effects of several key factors, such as the interface structure and the photoexciting condition, on CT absorptions are discussed. These findings should be of vital importance both to understand the sub-bandgap excited states and to recognize their roles in organic photovoltaic devices.</abstract><cop>Washington</cop><pub>Optical Society of America</pub><doi>10.1364/OL.398771</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0146-9592
ispartof Optics letters, 2020-08, Vol.45 (16), p.4492-4495
issn 0146-9592
1539-4794
language eng
recordid cdi_proquest_miscellaneous_2434475361
source Optica Publishing Group Journals
subjects Absorption spectra
Charge transfer
Electromagnetic absorption
Energy gap
Femtosecond pulses
Photovoltaic cells
title Sub-bandgap photoexcited dynamics at an organic donor/acceptor photovoltaic interface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T14%3A29%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sub-bandgap%20photoexcited%20dynamics%20at%20an%20organic%20donor/acceptor%20photovoltaic%20interface&rft.jtitle=Optics%20letters&rft.au=Zhang,%20Maomao&rft.date=2020-08-15&rft.volume=45&rft.issue=16&rft.spage=4492&rft.epage=4495&rft.pages=4492-4495&rft.issn=0146-9592&rft.eissn=1539-4794&rft_id=info:doi/10.1364/OL.398771&rft_dat=%3Cproquest_cross%3E2440104418%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440104418&rft_id=info:pmid/&rfr_iscdi=true