Evidence of flat bands and correlated states in buckled graphene superlattices

Two-dimensional atomic crystals can radically change their properties in response to external influences, such as substrate orientation or strain, forming materials with novel electronic structure 1 – 5 . An example is the creation of weakly dispersive, ‘flat’ bands in bilayer graphene for certain ‘...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2020-08, Vol.584 (7820), p.215-220
Hauptverfasser: Mao, Jinhai, Milovanović, Slaviša P., Anđelković, Miša, Lai, Xinyuan, Cao, Yang, Watanabe, Kenji, Taniguchi, Takashi, Covaci, Lucian, Peeters, Francois M., Geim, Andre K., Jiang, Yuhang, Andrei, Eva Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 220
container_issue 7820
container_start_page 215
container_title Nature (London)
container_volume 584
creator Mao, Jinhai
Milovanović, Slaviša P.
Anđelković, Miša
Lai, Xinyuan
Cao, Yang
Watanabe, Kenji
Taniguchi, Takashi
Covaci, Lucian
Peeters, Francois M.
Geim, Andre K.
Jiang, Yuhang
Andrei, Eva Y.
description Two-dimensional atomic crystals can radically change their properties in response to external influences, such as substrate orientation or strain, forming materials with novel electronic structure 1 – 5 . An example is the creation of weakly dispersive, ‘flat’ bands in bilayer graphene for certain ‘magic’ angles of twist between the orientations of the two layers 6 . The quenched kinetic energy in these flat bands promotes electron–electron interactions and facilitates the emergence of strongly correlated phases, such as superconductivity and correlated insulators. However, the very accurate fine-tuning required to obtain the magic angle in twisted-bilayer graphene poses challenges to fabrication and scalability. Here we present an alternative route to creating flat bands that does not involve fine-tuning. Using scanning tunnelling microscopy and spectroscopy, together with numerical simulations, we demonstrate that graphene monolayers placed on an atomically flat substrate can be forced to undergo a buckling transition 7 – 9 , resulting in a periodically modulated pseudo-magnetic field 10 – 14 , which in turn creates a ‘post-graphene’ material with flat electronic bands. When we introduce the Fermi level into these flat bands using electrostatic doping, we observe a pseudogap-like depletion in the density of states, which signals the emergence of a correlated state 15 – 17 . This buckling of two-dimensional crystals offers a strategy for creating other superlattice systems and, in particular, for exploring interaction phenomena characteristic of flat bands. Buckled monolayer graphene superlattices are found to provide an alternative to twisted bilayer graphene for the study of flat bands and correlated states in a carbon-based material.
doi_str_mv 10.1038/s41586-020-2567-3
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2434060841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A632376153</galeid><sourcerecordid>A632376153</sourcerecordid><originalsourceid>FETCH-LOGICAL-c640t-792ce38fe75596552888937095e2477ba8c171681411909ad73ccdd44e4aedd83</originalsourceid><addsrcrecordid>eNp10l1rFDEUBuAgil2rP8AbGfRGkdR8J3O5LFULpYJWvAzZ5Mw4dTYzTWZE_71Zt1pXtgxM4OQ5h5C8CD2l5IQSbt5kQaVRmDCCmVQa83toQYVWWCij76MFIcxgYrg6Qo9yviKESKrFQ3TEmTZGc7lAF6ffuwDRQzU0VdO7qVq7GHJVfpUfUoJSglDlqSy56mK1nv23vlTa5MavEKHK8wipqKnzkB-jB43rMzy5WY_R57enl6v3-PzDu7PV8hx7JciEdc08cNOAlrJWUjJjTM01qSUwofXaGU81VYYKSmtSu6C59yEIAcJBCIYfo5e7uWMarmfIk9102UPfuwjDnC0TXBBFjKCFvviPXg1ziuV0v5Woa63UrWpdD7aLzTAl57dD7VJxxrWikheFD6i2XENy_RCh6Up5zz8_4P3YXdt_0ckBVL4Am84fnPpqr6GYCX5MrZtztmefPu7b13fb5eWX1cW-pjvt05BzgsaOqdu49NNSYreRs7vI2RI5u42c3fY8u7nfeb2B8LfjT8YKYDuQy1ZsId0-wN1TfwGNI9o0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434499766</pqid></control><display><type>article</type><title>Evidence of flat bands and correlated states in buckled graphene superlattices</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Mao, Jinhai ; Milovanović, Slaviša P. ; Anđelković, Miša ; Lai, Xinyuan ; Cao, Yang ; Watanabe, Kenji ; Taniguchi, Takashi ; Covaci, Lucian ; Peeters, Francois M. ; Geim, Andre K. ; Jiang, Yuhang ; Andrei, Eva Y.</creator><creatorcontrib>Mao, Jinhai ; Milovanović, Slaviša P. ; Anđelković, Miša ; Lai, Xinyuan ; Cao, Yang ; Watanabe, Kenji ; Taniguchi, Takashi ; Covaci, Lucian ; Peeters, Francois M. ; Geim, Andre K. ; Jiang, Yuhang ; Andrei, Eva Y.</creatorcontrib><description>Two-dimensional atomic crystals can radically change their properties in response to external influences, such as substrate orientation or strain, forming materials with novel electronic structure 1 – 5 . An example is the creation of weakly dispersive, ‘flat’ bands in bilayer graphene for certain ‘magic’ angles of twist between the orientations of the two layers 6 . The quenched kinetic energy in these flat bands promotes electron–electron interactions and facilitates the emergence of strongly correlated phases, such as superconductivity and correlated insulators. However, the very accurate fine-tuning required to obtain the magic angle in twisted-bilayer graphene poses challenges to fabrication and scalability. Here we present an alternative route to creating flat bands that does not involve fine-tuning. Using scanning tunnelling microscopy and spectroscopy, together with numerical simulations, we demonstrate that graphene monolayers placed on an atomically flat substrate can be forced to undergo a buckling transition 7 – 9 , resulting in a periodically modulated pseudo-magnetic field 10 – 14 , which in turn creates a ‘post-graphene’ material with flat electronic bands. When we introduce the Fermi level into these flat bands using electrostatic doping, we observe a pseudogap-like depletion in the density of states, which signals the emergence of a correlated state 15 – 17 . This buckling of two-dimensional crystals offers a strategy for creating other superlattice systems and, in particular, for exploring interaction phenomena characteristic of flat bands. Buckled monolayer graphene superlattices are found to provide an alternative to twisted bilayer graphene for the study of flat bands and correlated states in a carbon-based material.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-020-2567-3</identifier><identifier>PMID: 32788735</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/119 ; 639/925/357 ; 639/925/357/918 ; Banded structure ; Bilayers ; Buckling ; Chemical properties ; Computer simulation ; Correlation ; Crystals ; Depletion ; Energy ; Fabrication ; Graphene ; Humanities and Social Sciences ; Insulators ; Kinetic energy ; Microscopy ; multidisciplinary ; Numerical simulations ; Scanning tunneling microscopy ; Science ; Science (multidisciplinary) ; Spectroscopy ; Spectrum analysis ; Substrates ; Superconductivity ; Superlattices ; Superlattices as materials ; Symmetry ; Thermal cycling ; Topography</subject><ispartof>Nature (London), 2020-08, Vol.584 (7820), p.215-220</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Aug 13, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c640t-792ce38fe75596552888937095e2477ba8c171681411909ad73ccdd44e4aedd83</citedby><cites>FETCH-LOGICAL-c640t-792ce38fe75596552888937095e2477ba8c171681411909ad73ccdd44e4aedd83</cites><orcidid>0000-0002-2516-2749 ; 0000-0003-3701-8119 ; 0000-0003-4842-4921 ; 0000-0002-6415-6456 ; 0000-0002-9034-3642 ; 0000-0002-4117-5662</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32788735$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mao, Jinhai</creatorcontrib><creatorcontrib>Milovanović, Slaviša P.</creatorcontrib><creatorcontrib>Anđelković, Miša</creatorcontrib><creatorcontrib>Lai, Xinyuan</creatorcontrib><creatorcontrib>Cao, Yang</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Covaci, Lucian</creatorcontrib><creatorcontrib>Peeters, Francois M.</creatorcontrib><creatorcontrib>Geim, Andre K.</creatorcontrib><creatorcontrib>Jiang, Yuhang</creatorcontrib><creatorcontrib>Andrei, Eva Y.</creatorcontrib><title>Evidence of flat bands and correlated states in buckled graphene superlattices</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Two-dimensional atomic crystals can radically change their properties in response to external influences, such as substrate orientation or strain, forming materials with novel electronic structure 1 – 5 . An example is the creation of weakly dispersive, ‘flat’ bands in bilayer graphene for certain ‘magic’ angles of twist between the orientations of the two layers 6 . The quenched kinetic energy in these flat bands promotes electron–electron interactions and facilitates the emergence of strongly correlated phases, such as superconductivity and correlated insulators. However, the very accurate fine-tuning required to obtain the magic angle in twisted-bilayer graphene poses challenges to fabrication and scalability. Here we present an alternative route to creating flat bands that does not involve fine-tuning. Using scanning tunnelling microscopy and spectroscopy, together with numerical simulations, we demonstrate that graphene monolayers placed on an atomically flat substrate can be forced to undergo a buckling transition 7 – 9 , resulting in a periodically modulated pseudo-magnetic field 10 – 14 , which in turn creates a ‘post-graphene’ material with flat electronic bands. When we introduce the Fermi level into these flat bands using electrostatic doping, we observe a pseudogap-like depletion in the density of states, which signals the emergence of a correlated state 15 – 17 . This buckling of two-dimensional crystals offers a strategy for creating other superlattice systems and, in particular, for exploring interaction phenomena characteristic of flat bands. Buckled monolayer graphene superlattices are found to provide an alternative to twisted bilayer graphene for the study of flat bands and correlated states in a carbon-based material.</description><subject>639/766/119</subject><subject>639/925/357</subject><subject>639/925/357/918</subject><subject>Banded structure</subject><subject>Bilayers</subject><subject>Buckling</subject><subject>Chemical properties</subject><subject>Computer simulation</subject><subject>Correlation</subject><subject>Crystals</subject><subject>Depletion</subject><subject>Energy</subject><subject>Fabrication</subject><subject>Graphene</subject><subject>Humanities and Social Sciences</subject><subject>Insulators</subject><subject>Kinetic energy</subject><subject>Microscopy</subject><subject>multidisciplinary</subject><subject>Numerical simulations</subject><subject>Scanning tunneling microscopy</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Substrates</subject><subject>Superconductivity</subject><subject>Superlattices</subject><subject>Superlattices as materials</subject><subject>Symmetry</subject><subject>Thermal cycling</subject><subject>Topography</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp10l1rFDEUBuAgil2rP8AbGfRGkdR8J3O5LFULpYJWvAzZ5Mw4dTYzTWZE_71Zt1pXtgxM4OQ5h5C8CD2l5IQSbt5kQaVRmDCCmVQa83toQYVWWCij76MFIcxgYrg6Qo9yviKESKrFQ3TEmTZGc7lAF6ffuwDRQzU0VdO7qVq7GHJVfpUfUoJSglDlqSy56mK1nv23vlTa5MavEKHK8wipqKnzkB-jB43rMzy5WY_R57enl6v3-PzDu7PV8hx7JciEdc08cNOAlrJWUjJjTM01qSUwofXaGU81VYYKSmtSu6C59yEIAcJBCIYfo5e7uWMarmfIk9102UPfuwjDnC0TXBBFjKCFvviPXg1ziuV0v5Woa63UrWpdD7aLzTAl57dD7VJxxrWikheFD6i2XENy_RCh6Up5zz8_4P3YXdt_0ckBVL4Am84fnPpqr6GYCX5MrZtztmefPu7b13fb5eWX1cW-pjvt05BzgsaOqdu49NNSYreRs7vI2RI5u42c3fY8u7nfeb2B8LfjT8YKYDuQy1ZsId0-wN1TfwGNI9o0</recordid><startdate>20200813</startdate><enddate>20200813</enddate><creator>Mao, Jinhai</creator><creator>Milovanović, Slaviša P.</creator><creator>Anđelković, Miša</creator><creator>Lai, Xinyuan</creator><creator>Cao, Yang</creator><creator>Watanabe, Kenji</creator><creator>Taniguchi, Takashi</creator><creator>Covaci, Lucian</creator><creator>Peeters, Francois M.</creator><creator>Geim, Andre K.</creator><creator>Jiang, Yuhang</creator><creator>Andrei, Eva Y.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2516-2749</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0003-4842-4921</orcidid><orcidid>https://orcid.org/0000-0002-6415-6456</orcidid><orcidid>https://orcid.org/0000-0002-9034-3642</orcidid><orcidid>https://orcid.org/0000-0002-4117-5662</orcidid></search><sort><creationdate>20200813</creationdate><title>Evidence of flat bands and correlated states in buckled graphene superlattices</title><author>Mao, Jinhai ; Milovanović, Slaviša P. ; Anđelković, Miša ; Lai, Xinyuan ; Cao, Yang ; Watanabe, Kenji ; Taniguchi, Takashi ; Covaci, Lucian ; Peeters, Francois M. ; Geim, Andre K. ; Jiang, Yuhang ; Andrei, Eva Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c640t-792ce38fe75596552888937095e2477ba8c171681411909ad73ccdd44e4aedd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/766/119</topic><topic>639/925/357</topic><topic>639/925/357/918</topic><topic>Banded structure</topic><topic>Bilayers</topic><topic>Buckling</topic><topic>Chemical properties</topic><topic>Computer simulation</topic><topic>Correlation</topic><topic>Crystals</topic><topic>Depletion</topic><topic>Energy</topic><topic>Fabrication</topic><topic>Graphene</topic><topic>Humanities and Social Sciences</topic><topic>Insulators</topic><topic>Kinetic energy</topic><topic>Microscopy</topic><topic>multidisciplinary</topic><topic>Numerical simulations</topic><topic>Scanning tunneling microscopy</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Substrates</topic><topic>Superconductivity</topic><topic>Superlattices</topic><topic>Superlattices as materials</topic><topic>Symmetry</topic><topic>Thermal cycling</topic><topic>Topography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mao, Jinhai</creatorcontrib><creatorcontrib>Milovanović, Slaviša P.</creatorcontrib><creatorcontrib>Anđelković, Miša</creatorcontrib><creatorcontrib>Lai, Xinyuan</creatorcontrib><creatorcontrib>Cao, Yang</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Covaci, Lucian</creatorcontrib><creatorcontrib>Peeters, Francois M.</creatorcontrib><creatorcontrib>Geim, Andre K.</creatorcontrib><creatorcontrib>Jiang, Yuhang</creatorcontrib><creatorcontrib>Andrei, Eva Y.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mao, Jinhai</au><au>Milovanović, Slaviša P.</au><au>Anđelković, Miša</au><au>Lai, Xinyuan</au><au>Cao, Yang</au><au>Watanabe, Kenji</au><au>Taniguchi, Takashi</au><au>Covaci, Lucian</au><au>Peeters, Francois M.</au><au>Geim, Andre K.</au><au>Jiang, Yuhang</au><au>Andrei, Eva Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evidence of flat bands and correlated states in buckled graphene superlattices</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2020-08-13</date><risdate>2020</risdate><volume>584</volume><issue>7820</issue><spage>215</spage><epage>220</epage><pages>215-220</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Two-dimensional atomic crystals can radically change their properties in response to external influences, such as substrate orientation or strain, forming materials with novel electronic structure 1 – 5 . An example is the creation of weakly dispersive, ‘flat’ bands in bilayer graphene for certain ‘magic’ angles of twist between the orientations of the two layers 6 . The quenched kinetic energy in these flat bands promotes electron–electron interactions and facilitates the emergence of strongly correlated phases, such as superconductivity and correlated insulators. However, the very accurate fine-tuning required to obtain the magic angle in twisted-bilayer graphene poses challenges to fabrication and scalability. Here we present an alternative route to creating flat bands that does not involve fine-tuning. Using scanning tunnelling microscopy and spectroscopy, together with numerical simulations, we demonstrate that graphene monolayers placed on an atomically flat substrate can be forced to undergo a buckling transition 7 – 9 , resulting in a periodically modulated pseudo-magnetic field 10 – 14 , which in turn creates a ‘post-graphene’ material with flat electronic bands. When we introduce the Fermi level into these flat bands using electrostatic doping, we observe a pseudogap-like depletion in the density of states, which signals the emergence of a correlated state 15 – 17 . This buckling of two-dimensional crystals offers a strategy for creating other superlattice systems and, in particular, for exploring interaction phenomena characteristic of flat bands. Buckled monolayer graphene superlattices are found to provide an alternative to twisted bilayer graphene for the study of flat bands and correlated states in a carbon-based material.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32788735</pmid><doi>10.1038/s41586-020-2567-3</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-2516-2749</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0003-4842-4921</orcidid><orcidid>https://orcid.org/0000-0002-6415-6456</orcidid><orcidid>https://orcid.org/0000-0002-9034-3642</orcidid><orcidid>https://orcid.org/0000-0002-4117-5662</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2020-08, Vol.584 (7820), p.215-220
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_miscellaneous_2434060841
source Nature; Alma/SFX Local Collection
subjects 639/766/119
639/925/357
639/925/357/918
Banded structure
Bilayers
Buckling
Chemical properties
Computer simulation
Correlation
Crystals
Depletion
Energy
Fabrication
Graphene
Humanities and Social Sciences
Insulators
Kinetic energy
Microscopy
multidisciplinary
Numerical simulations
Scanning tunneling microscopy
Science
Science (multidisciplinary)
Spectroscopy
Spectrum analysis
Substrates
Superconductivity
Superlattices
Superlattices as materials
Symmetry
Thermal cycling
Topography
title Evidence of flat bands and correlated states in buckled graphene superlattices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T06%3A11%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evidence%20of%20flat%20bands%20and%20correlated%20states%20in%20buckled%20graphene%20superlattices&rft.jtitle=Nature%20(London)&rft.au=Mao,%20Jinhai&rft.date=2020-08-13&rft.volume=584&rft.issue=7820&rft.spage=215&rft.epage=220&rft.pages=215-220&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-020-2567-3&rft_dat=%3Cgale_proqu%3EA632376153%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2434499766&rft_id=info:pmid/32788735&rft_galeid=A632376153&rfr_iscdi=true