Prognosis and personalized treatment prediction in TP53 -mutant hepatocellular carcinoma: an in silico strategy towards precision oncology

TP53 mutation is one of the most common genetic changes in hepatocellular carcinoma (HCC). It is of great clinical significance to tailor specialized prognostication approach and to explore more therapeutic options for TP53-mutant HCCs. In this study, a total of 1135 HCC patients were retrospectivel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Briefings in bioinformatics 2021-05, Vol.22 (3)
Hauptverfasser: Yang, Chen, Huang, Xiaowen, Li, Yan, Chen, Junfei, Lv, Yuanyuan, Dai, Shixue
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Briefings in bioinformatics
container_volume 22
creator Yang, Chen
Huang, Xiaowen
Li, Yan
Chen, Junfei
Lv, Yuanyuan
Dai, Shixue
description TP53 mutation is one of the most common genetic changes in hepatocellular carcinoma (HCC). It is of great clinical significance to tailor specialized prognostication approach and to explore more therapeutic options for TP53-mutant HCCs. In this study, a total of 1135 HCC patients were retrospectively analyzed. We developed a random forest-based prediction model to estimate TP53 mutational status, tackling the problem of limited sample size in TP53-mutant HCCs. A multi-step process was performed to develop robust poor prognosis-associated signature (PPS). Compared with previous established population-based signatures, PPS manifested superior ability to predict survival in TP53-mutant patients. After in silico screening of 2249 drug targets and 1770 compounds, we found that three targets (CANT1, CBFB and PKM) and two agents (irinotecan and YM-155) might have potential therapeutic implications in high-PPS patients. The results of drug targets prediction and compounds prediction complemented each other, presenting a comprehensive view of potential treatment strategy. Overall, our study has not only provided new insights into personalized prognostication approaches, but also thrown light on integrating tailored risk stratification with precision therapy.
doi_str_mv 10.1093/bib/bbaa164
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2434060450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2434060450</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-73323c8311cc4abc8abdaff2dab6456ef211a761d151eeae92ac93ccdd14aace3</originalsourceid><addsrcrecordid>eNotkE1LxDAQhosouK6e_AM5ClI3adJ215ssfsGCe1jPZTqZrpE2qUmKrD_BX23LepkZeF8emCdJrgW_E3wlF7WpF3UNIAp1ksyEKstU8VydTndRprkq5HlyEcIn5xkvl2KW_G6921sXTGBgNevJB2ehNT-kWfQEsSMbWe9JG4zGWWYs221zydJuiDBGH9RDdEhtO7TgGYJHY10H9yNvKgfTGnQsRA-R9gcW3Td4HSYkmjARnUXXuv3hMjlroA109b_nyfvT4279km7enl_XD5sUpcxiWo5T4lIKgaigxiXUGpom01AXKi-oyYSAshBa5IIIaJUBriSi1kIBIMl5cnPk9t59DRRi1ZkwPQCW3BCqTEnFC65yPlZvj1X0LgRPTdV704E_VIJXk_FqNF79G5d_m0J6FA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434060450</pqid></control><display><type>article</type><title>Prognosis and personalized treatment prediction in TP53 -mutant hepatocellular carcinoma: an in silico strategy towards precision oncology</title><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>EBSCOhost Business Source Complete</source><creator>Yang, Chen ; Huang, Xiaowen ; Li, Yan ; Chen, Junfei ; Lv, Yuanyuan ; Dai, Shixue</creator><creatorcontrib>Yang, Chen ; Huang, Xiaowen ; Li, Yan ; Chen, Junfei ; Lv, Yuanyuan ; Dai, Shixue</creatorcontrib><description>TP53 mutation is one of the most common genetic changes in hepatocellular carcinoma (HCC). It is of great clinical significance to tailor specialized prognostication approach and to explore more therapeutic options for TP53-mutant HCCs. In this study, a total of 1135 HCC patients were retrospectively analyzed. We developed a random forest-based prediction model to estimate TP53 mutational status, tackling the problem of limited sample size in TP53-mutant HCCs. A multi-step process was performed to develop robust poor prognosis-associated signature (PPS). Compared with previous established population-based signatures, PPS manifested superior ability to predict survival in TP53-mutant patients. After in silico screening of 2249 drug targets and 1770 compounds, we found that three targets (CANT1, CBFB and PKM) and two agents (irinotecan and YM-155) might have potential therapeutic implications in high-PPS patients. The results of drug targets prediction and compounds prediction complemented each other, presenting a comprehensive view of potential treatment strategy. Overall, our study has not only provided new insights into personalized prognostication approaches, but also thrown light on integrating tailored risk stratification with precision therapy.</description><identifier>ISSN: 1467-5463</identifier><identifier>EISSN: 1477-4054</identifier><identifier>DOI: 10.1093/bib/bbaa164</identifier><language>eng</language><ispartof>Briefings in bioinformatics, 2021-05, Vol.22 (3)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-73323c8311cc4abc8abdaff2dab6456ef211a761d151eeae92ac93ccdd14aace3</citedby><cites>FETCH-LOGICAL-c332t-73323c8311cc4abc8abdaff2dab6456ef211a761d151eeae92ac93ccdd14aace3</cites><orcidid>0000-0001-6428-3634</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Yang, Chen</creatorcontrib><creatorcontrib>Huang, Xiaowen</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Chen, Junfei</creatorcontrib><creatorcontrib>Lv, Yuanyuan</creatorcontrib><creatorcontrib>Dai, Shixue</creatorcontrib><title>Prognosis and personalized treatment prediction in TP53 -mutant hepatocellular carcinoma: an in silico strategy towards precision oncology</title><title>Briefings in bioinformatics</title><description>TP53 mutation is one of the most common genetic changes in hepatocellular carcinoma (HCC). It is of great clinical significance to tailor specialized prognostication approach and to explore more therapeutic options for TP53-mutant HCCs. In this study, a total of 1135 HCC patients were retrospectively analyzed. We developed a random forest-based prediction model to estimate TP53 mutational status, tackling the problem of limited sample size in TP53-mutant HCCs. A multi-step process was performed to develop robust poor prognosis-associated signature (PPS). Compared with previous established population-based signatures, PPS manifested superior ability to predict survival in TP53-mutant patients. After in silico screening of 2249 drug targets and 1770 compounds, we found that three targets (CANT1, CBFB and PKM) and two agents (irinotecan and YM-155) might have potential therapeutic implications in high-PPS patients. The results of drug targets prediction and compounds prediction complemented each other, presenting a comprehensive view of potential treatment strategy. Overall, our study has not only provided new insights into personalized prognostication approaches, but also thrown light on integrating tailored risk stratification with precision therapy.</description><issn>1467-5463</issn><issn>1477-4054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNotkE1LxDAQhosouK6e_AM5ClI3adJ215ssfsGCe1jPZTqZrpE2qUmKrD_BX23LepkZeF8emCdJrgW_E3wlF7WpF3UNIAp1ksyEKstU8VydTndRprkq5HlyEcIn5xkvl2KW_G6921sXTGBgNevJB2ehNT-kWfQEsSMbWe9JG4zGWWYs221zydJuiDBGH9RDdEhtO7TgGYJHY10H9yNvKgfTGnQsRA-R9gcW3Td4HSYkmjARnUXXuv3hMjlroA109b_nyfvT4279km7enl_XD5sUpcxiWo5T4lIKgaigxiXUGpom01AXKi-oyYSAshBa5IIIaJUBriSi1kIBIMl5cnPk9t59DRRi1ZkwPQCW3BCqTEnFC65yPlZvj1X0LgRPTdV704E_VIJXk_FqNF79G5d_m0J6FA</recordid><startdate>20210520</startdate><enddate>20210520</enddate><creator>Yang, Chen</creator><creator>Huang, Xiaowen</creator><creator>Li, Yan</creator><creator>Chen, Junfei</creator><creator>Lv, Yuanyuan</creator><creator>Dai, Shixue</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6428-3634</orcidid></search><sort><creationdate>20210520</creationdate><title>Prognosis and personalized treatment prediction in TP53 -mutant hepatocellular carcinoma: an in silico strategy towards precision oncology</title><author>Yang, Chen ; Huang, Xiaowen ; Li, Yan ; Chen, Junfei ; Lv, Yuanyuan ; Dai, Shixue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-73323c8311cc4abc8abdaff2dab6456ef211a761d151eeae92ac93ccdd14aace3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Chen</creatorcontrib><creatorcontrib>Huang, Xiaowen</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Chen, Junfei</creatorcontrib><creatorcontrib>Lv, Yuanyuan</creatorcontrib><creatorcontrib>Dai, Shixue</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Briefings in bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Chen</au><au>Huang, Xiaowen</au><au>Li, Yan</au><au>Chen, Junfei</au><au>Lv, Yuanyuan</au><au>Dai, Shixue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prognosis and personalized treatment prediction in TP53 -mutant hepatocellular carcinoma: an in silico strategy towards precision oncology</atitle><jtitle>Briefings in bioinformatics</jtitle><date>2021-05-20</date><risdate>2021</risdate><volume>22</volume><issue>3</issue><issn>1467-5463</issn><eissn>1477-4054</eissn><abstract>TP53 mutation is one of the most common genetic changes in hepatocellular carcinoma (HCC). It is of great clinical significance to tailor specialized prognostication approach and to explore more therapeutic options for TP53-mutant HCCs. In this study, a total of 1135 HCC patients were retrospectively analyzed. We developed a random forest-based prediction model to estimate TP53 mutational status, tackling the problem of limited sample size in TP53-mutant HCCs. A multi-step process was performed to develop robust poor prognosis-associated signature (PPS). Compared with previous established population-based signatures, PPS manifested superior ability to predict survival in TP53-mutant patients. After in silico screening of 2249 drug targets and 1770 compounds, we found that three targets (CANT1, CBFB and PKM) and two agents (irinotecan and YM-155) might have potential therapeutic implications in high-PPS patients. The results of drug targets prediction and compounds prediction complemented each other, presenting a comprehensive view of potential treatment strategy. Overall, our study has not only provided new insights into personalized prognostication approaches, but also thrown light on integrating tailored risk stratification with precision therapy.</abstract><doi>10.1093/bib/bbaa164</doi><orcidid>https://orcid.org/0000-0001-6428-3634</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1467-5463
ispartof Briefings in bioinformatics, 2021-05, Vol.22 (3)
issn 1467-5463
1477-4054
language eng
recordid cdi_proquest_miscellaneous_2434060450
source Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals; PubMed Central; EBSCOhost Business Source Complete
title Prognosis and personalized treatment prediction in TP53 -mutant hepatocellular carcinoma: an in silico strategy towards precision oncology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A11%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prognosis%20and%20personalized%20treatment%20prediction%20in%20TP53%20-mutant%20hepatocellular%20carcinoma:%20an%20in%20silico%20strategy%20towards%20precision%20oncology&rft.jtitle=Briefings%20in%20bioinformatics&rft.au=Yang,%20Chen&rft.date=2021-05-20&rft.volume=22&rft.issue=3&rft.issn=1467-5463&rft.eissn=1477-4054&rft_id=info:doi/10.1093/bib/bbaa164&rft_dat=%3Cproquest_cross%3E2434060450%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2434060450&rft_id=info:pmid/&rfr_iscdi=true