Prognosis and personalized treatment prediction in TP53 -mutant hepatocellular carcinoma: an in silico strategy towards precision oncology
TP53 mutation is one of the most common genetic changes in hepatocellular carcinoma (HCC). It is of great clinical significance to tailor specialized prognostication approach and to explore more therapeutic options for TP53-mutant HCCs. In this study, a total of 1135 HCC patients were retrospectivel...
Gespeichert in:
Veröffentlicht in: | Briefings in bioinformatics 2021-05, Vol.22 (3) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Briefings in bioinformatics |
container_volume | 22 |
creator | Yang, Chen Huang, Xiaowen Li, Yan Chen, Junfei Lv, Yuanyuan Dai, Shixue |
description | TP53 mutation is one of the most common genetic changes in hepatocellular carcinoma (HCC). It is of great clinical significance to tailor specialized prognostication approach and to explore more therapeutic options for TP53-mutant HCCs. In this study, a total of 1135 HCC patients were retrospectively analyzed. We developed a random forest-based prediction model to estimate TP53 mutational status, tackling the problem of limited sample size in TP53-mutant HCCs. A multi-step process was performed to develop robust poor prognosis-associated signature (PPS). Compared with previous established population-based signatures, PPS manifested superior ability to predict survival in TP53-mutant patients. After in silico screening of 2249 drug targets and 1770 compounds, we found that three targets (CANT1, CBFB and PKM) and two agents (irinotecan and YM-155) might have potential therapeutic implications in high-PPS patients. The results of drug targets prediction and compounds prediction complemented each other, presenting a comprehensive view of potential treatment strategy. Overall, our study has not only provided new insights into personalized prognostication approaches, but also thrown light on integrating tailored risk stratification with precision therapy. |
doi_str_mv | 10.1093/bib/bbaa164 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2434060450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2434060450</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-73323c8311cc4abc8abdaff2dab6456ef211a761d151eeae92ac93ccdd14aace3</originalsourceid><addsrcrecordid>eNotkE1LxDAQhosouK6e_AM5ClI3adJ215ssfsGCe1jPZTqZrpE2qUmKrD_BX23LepkZeF8emCdJrgW_E3wlF7WpF3UNIAp1ksyEKstU8VydTndRprkq5HlyEcIn5xkvl2KW_G6921sXTGBgNevJB2ehNT-kWfQEsSMbWe9JG4zGWWYs221zydJuiDBGH9RDdEhtO7TgGYJHY10H9yNvKgfTGnQsRA-R9gcW3Td4HSYkmjARnUXXuv3hMjlroA109b_nyfvT4279km7enl_XD5sUpcxiWo5T4lIKgaigxiXUGpom01AXKi-oyYSAshBa5IIIaJUBriSi1kIBIMl5cnPk9t59DRRi1ZkwPQCW3BCqTEnFC65yPlZvj1X0LgRPTdV704E_VIJXk_FqNF79G5d_m0J6FA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434060450</pqid></control><display><type>article</type><title>Prognosis and personalized treatment prediction in TP53 -mutant hepatocellular carcinoma: an in silico strategy towards precision oncology</title><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>EBSCOhost Business Source Complete</source><creator>Yang, Chen ; Huang, Xiaowen ; Li, Yan ; Chen, Junfei ; Lv, Yuanyuan ; Dai, Shixue</creator><creatorcontrib>Yang, Chen ; Huang, Xiaowen ; Li, Yan ; Chen, Junfei ; Lv, Yuanyuan ; Dai, Shixue</creatorcontrib><description>TP53 mutation is one of the most common genetic changes in hepatocellular carcinoma (HCC). It is of great clinical significance to tailor specialized prognostication approach and to explore more therapeutic options for TP53-mutant HCCs. In this study, a total of 1135 HCC patients were retrospectively analyzed. We developed a random forest-based prediction model to estimate TP53 mutational status, tackling the problem of limited sample size in TP53-mutant HCCs. A multi-step process was performed to develop robust poor prognosis-associated signature (PPS). Compared with previous established population-based signatures, PPS manifested superior ability to predict survival in TP53-mutant patients. After in silico screening of 2249 drug targets and 1770 compounds, we found that three targets (CANT1, CBFB and PKM) and two agents (irinotecan and YM-155) might have potential therapeutic implications in high-PPS patients. The results of drug targets prediction and compounds prediction complemented each other, presenting a comprehensive view of potential treatment strategy. Overall, our study has not only provided new insights into personalized prognostication approaches, but also thrown light on integrating tailored risk stratification with precision therapy.</description><identifier>ISSN: 1467-5463</identifier><identifier>EISSN: 1477-4054</identifier><identifier>DOI: 10.1093/bib/bbaa164</identifier><language>eng</language><ispartof>Briefings in bioinformatics, 2021-05, Vol.22 (3)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-73323c8311cc4abc8abdaff2dab6456ef211a761d151eeae92ac93ccdd14aace3</citedby><cites>FETCH-LOGICAL-c332t-73323c8311cc4abc8abdaff2dab6456ef211a761d151eeae92ac93ccdd14aace3</cites><orcidid>0000-0001-6428-3634</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Yang, Chen</creatorcontrib><creatorcontrib>Huang, Xiaowen</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Chen, Junfei</creatorcontrib><creatorcontrib>Lv, Yuanyuan</creatorcontrib><creatorcontrib>Dai, Shixue</creatorcontrib><title>Prognosis and personalized treatment prediction in TP53 -mutant hepatocellular carcinoma: an in silico strategy towards precision oncology</title><title>Briefings in bioinformatics</title><description>TP53 mutation is one of the most common genetic changes in hepatocellular carcinoma (HCC). It is of great clinical significance to tailor specialized prognostication approach and to explore more therapeutic options for TP53-mutant HCCs. In this study, a total of 1135 HCC patients were retrospectively analyzed. We developed a random forest-based prediction model to estimate TP53 mutational status, tackling the problem of limited sample size in TP53-mutant HCCs. A multi-step process was performed to develop robust poor prognosis-associated signature (PPS). Compared with previous established population-based signatures, PPS manifested superior ability to predict survival in TP53-mutant patients. After in silico screening of 2249 drug targets and 1770 compounds, we found that three targets (CANT1, CBFB and PKM) and two agents (irinotecan and YM-155) might have potential therapeutic implications in high-PPS patients. The results of drug targets prediction and compounds prediction complemented each other, presenting a comprehensive view of potential treatment strategy. Overall, our study has not only provided new insights into personalized prognostication approaches, but also thrown light on integrating tailored risk stratification with precision therapy.</description><issn>1467-5463</issn><issn>1477-4054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNotkE1LxDAQhosouK6e_AM5ClI3adJ215ssfsGCe1jPZTqZrpE2qUmKrD_BX23LepkZeF8emCdJrgW_E3wlF7WpF3UNIAp1ksyEKstU8VydTndRprkq5HlyEcIn5xkvl2KW_G6921sXTGBgNevJB2ehNT-kWfQEsSMbWe9JG4zGWWYs221zydJuiDBGH9RDdEhtO7TgGYJHY10H9yNvKgfTGnQsRA-R9gcW3Td4HSYkmjARnUXXuv3hMjlroA109b_nyfvT4279km7enl_XD5sUpcxiWo5T4lIKgaigxiXUGpom01AXKi-oyYSAshBa5IIIaJUBriSi1kIBIMl5cnPk9t59DRRi1ZkwPQCW3BCqTEnFC65yPlZvj1X0LgRPTdV704E_VIJXk_FqNF79G5d_m0J6FA</recordid><startdate>20210520</startdate><enddate>20210520</enddate><creator>Yang, Chen</creator><creator>Huang, Xiaowen</creator><creator>Li, Yan</creator><creator>Chen, Junfei</creator><creator>Lv, Yuanyuan</creator><creator>Dai, Shixue</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6428-3634</orcidid></search><sort><creationdate>20210520</creationdate><title>Prognosis and personalized treatment prediction in TP53 -mutant hepatocellular carcinoma: an in silico strategy towards precision oncology</title><author>Yang, Chen ; Huang, Xiaowen ; Li, Yan ; Chen, Junfei ; Lv, Yuanyuan ; Dai, Shixue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-73323c8311cc4abc8abdaff2dab6456ef211a761d151eeae92ac93ccdd14aace3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Chen</creatorcontrib><creatorcontrib>Huang, Xiaowen</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Chen, Junfei</creatorcontrib><creatorcontrib>Lv, Yuanyuan</creatorcontrib><creatorcontrib>Dai, Shixue</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Briefings in bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Chen</au><au>Huang, Xiaowen</au><au>Li, Yan</au><au>Chen, Junfei</au><au>Lv, Yuanyuan</au><au>Dai, Shixue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prognosis and personalized treatment prediction in TP53 -mutant hepatocellular carcinoma: an in silico strategy towards precision oncology</atitle><jtitle>Briefings in bioinformatics</jtitle><date>2021-05-20</date><risdate>2021</risdate><volume>22</volume><issue>3</issue><issn>1467-5463</issn><eissn>1477-4054</eissn><abstract>TP53 mutation is one of the most common genetic changes in hepatocellular carcinoma (HCC). It is of great clinical significance to tailor specialized prognostication approach and to explore more therapeutic options for TP53-mutant HCCs. In this study, a total of 1135 HCC patients were retrospectively analyzed. We developed a random forest-based prediction model to estimate TP53 mutational status, tackling the problem of limited sample size in TP53-mutant HCCs. A multi-step process was performed to develop robust poor prognosis-associated signature (PPS). Compared with previous established population-based signatures, PPS manifested superior ability to predict survival in TP53-mutant patients. After in silico screening of 2249 drug targets and 1770 compounds, we found that three targets (CANT1, CBFB and PKM) and two agents (irinotecan and YM-155) might have potential therapeutic implications in high-PPS patients. The results of drug targets prediction and compounds prediction complemented each other, presenting a comprehensive view of potential treatment strategy. Overall, our study has not only provided new insights into personalized prognostication approaches, but also thrown light on integrating tailored risk stratification with precision therapy.</abstract><doi>10.1093/bib/bbaa164</doi><orcidid>https://orcid.org/0000-0001-6428-3634</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1467-5463 |
ispartof | Briefings in bioinformatics, 2021-05, Vol.22 (3) |
issn | 1467-5463 1477-4054 |
language | eng |
recordid | cdi_proquest_miscellaneous_2434060450 |
source | Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals; PubMed Central; EBSCOhost Business Source Complete |
title | Prognosis and personalized treatment prediction in TP53 -mutant hepatocellular carcinoma: an in silico strategy towards precision oncology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A11%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prognosis%20and%20personalized%20treatment%20prediction%20in%20TP53%20-mutant%20hepatocellular%20carcinoma:%20an%20in%20silico%20strategy%20towards%20precision%20oncology&rft.jtitle=Briefings%20in%20bioinformatics&rft.au=Yang,%20Chen&rft.date=2021-05-20&rft.volume=22&rft.issue=3&rft.issn=1467-5463&rft.eissn=1477-4054&rft_id=info:doi/10.1093/bib/bbaa164&rft_dat=%3Cproquest_cross%3E2434060450%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2434060450&rft_id=info:pmid/&rfr_iscdi=true |