Metabolite-Based Modification of Poly(l‑lysine) for Improved Gene Delivery

Synthetic gene delivery systems employ multiple functions to enable safe and effective transport of DNA to target cells. Here, we describe metabolite-based poly­(l-lysine) (PLL) modifiers that improve transfection by imparting both pH buffering and nanoparticle stabilization functions within a singl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomacromolecules 2020-09, Vol.21 (9), p.3596-3607
Hauptverfasser: Urello, Morgan A, Xiang, Lucia, Colombo, Raffaele, Ma, Alexander, Joseph, Augustine, Boyd, Jonathan, Peterson, Norman, Gao, Changshou, Wu, Herren, Christie, R. James
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3607
container_issue 9
container_start_page 3596
container_title Biomacromolecules
container_volume 21
creator Urello, Morgan A
Xiang, Lucia
Colombo, Raffaele
Ma, Alexander
Joseph, Augustine
Boyd, Jonathan
Peterson, Norman
Gao, Changshou
Wu, Herren
Christie, R. James
description Synthetic gene delivery systems employ multiple functions to enable safe and effective transport of DNA to target cells. Here, we describe metabolite-based poly­(l-lysine) (PLL) modifiers that improve transfection by imparting both pH buffering and nanoparticle stabilization functions within a single molecular unit. PLL modifiers were based on morpholine (M), morpholine and niacin (MN), or thiomorpholine (TM). PLL modification with (MN) or (TM) imparted buffering function over the pH range of 5–7 both in solution and live cells and enhanced the stability of PLL DNA nanoparticles, which exhibited higher resistance to polyanion exchange and prolonged blood circulation. These properties translated into increased transfection efficiency in vitro coupled with reduced toxicity compared to unmodified PLL and PLL­(M). Furthermore, PEG-PLL­(MN) DNA nanoparticles transfected muscle tissue in vivo for >45 days following intramuscular injection. These polymer modifiers demonstrate the successful design of multifunctional units that improve transfection of synthetic gene delivery systems while maintaining biocompatibility.
doi_str_mv 10.1021/acs.biomac.0c00614
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2434053932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2434053932</sourcerecordid><originalsourceid>FETCH-LOGICAL-a319t-7f2ae7bc01323e8395fabdd1ea8a994421fee8d3f0d51631be229a3bb45117033</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAVZZlkWC_5LUSyhQKrWCBawtOxlLrpy42ClSdlyBK3ISUtI1qxlp3nua9yF0TXBGMCW3qoqZtr5RVYYrjAvCT9CE5LRIeYHp6d-ep2UpynN0EeMWYywYzydovYFOae9sB-m9ilAnG19bYyvVWd8m3iSv3vUz9_P17fpoW7hJjA_JqtkF_zmol9BC8gDOfkLoL9GZUS7C1XFO0fvT49viOV2_LFeLu3WqGBFdWhqqoNQVJowymDORG6XrmoCaKyE4p8QAzGtmcJ2TghENlArFtOY5ISVmbIpmY-7wxMceYicbGytwTrXg91FSzjjOmRjip4iO0ir4GAMYuQu2UaGXBMsDOjmgkyM6eUQ3mLLRdLht_T60Q5v_DL-3k3SI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434053932</pqid></control><display><type>article</type><title>Metabolite-Based Modification of Poly(l‑lysine) for Improved Gene Delivery</title><source>ACS Publications</source><creator>Urello, Morgan A ; Xiang, Lucia ; Colombo, Raffaele ; Ma, Alexander ; Joseph, Augustine ; Boyd, Jonathan ; Peterson, Norman ; Gao, Changshou ; Wu, Herren ; Christie, R. James</creator><creatorcontrib>Urello, Morgan A ; Xiang, Lucia ; Colombo, Raffaele ; Ma, Alexander ; Joseph, Augustine ; Boyd, Jonathan ; Peterson, Norman ; Gao, Changshou ; Wu, Herren ; Christie, R. James</creatorcontrib><description>Synthetic gene delivery systems employ multiple functions to enable safe and effective transport of DNA to target cells. Here, we describe metabolite-based poly­(l-lysine) (PLL) modifiers that improve transfection by imparting both pH buffering and nanoparticle stabilization functions within a single molecular unit. PLL modifiers were based on morpholine (M), morpholine and niacin (MN), or thiomorpholine (TM). PLL modification with (MN) or (TM) imparted buffering function over the pH range of 5–7 both in solution and live cells and enhanced the stability of PLL DNA nanoparticles, which exhibited higher resistance to polyanion exchange and prolonged blood circulation. These properties translated into increased transfection efficiency in vitro coupled with reduced toxicity compared to unmodified PLL and PLL­(M). Furthermore, PEG-PLL­(MN) DNA nanoparticles transfected muscle tissue in vivo for &gt;45 days following intramuscular injection. These polymer modifiers demonstrate the successful design of multifunctional units that improve transfection of synthetic gene delivery systems while maintaining biocompatibility.</description><identifier>ISSN: 1525-7797</identifier><identifier>EISSN: 1526-4602</identifier><identifier>DOI: 10.1021/acs.biomac.0c00614</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Biomacromolecules, 2020-09, Vol.21 (9), p.3596-3607</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a319t-7f2ae7bc01323e8395fabdd1ea8a994421fee8d3f0d51631be229a3bb45117033</citedby><cites>FETCH-LOGICAL-a319t-7f2ae7bc01323e8395fabdd1ea8a994421fee8d3f0d51631be229a3bb45117033</cites><orcidid>0000-0002-8369-804X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.biomac.0c00614$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.biomac.0c00614$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27074,27922,27923,56736,56786</link.rule.ids></links><search><creatorcontrib>Urello, Morgan A</creatorcontrib><creatorcontrib>Xiang, Lucia</creatorcontrib><creatorcontrib>Colombo, Raffaele</creatorcontrib><creatorcontrib>Ma, Alexander</creatorcontrib><creatorcontrib>Joseph, Augustine</creatorcontrib><creatorcontrib>Boyd, Jonathan</creatorcontrib><creatorcontrib>Peterson, Norman</creatorcontrib><creatorcontrib>Gao, Changshou</creatorcontrib><creatorcontrib>Wu, Herren</creatorcontrib><creatorcontrib>Christie, R. James</creatorcontrib><title>Metabolite-Based Modification of Poly(l‑lysine) for Improved Gene Delivery</title><title>Biomacromolecules</title><addtitle>Biomacromolecules</addtitle><description>Synthetic gene delivery systems employ multiple functions to enable safe and effective transport of DNA to target cells. Here, we describe metabolite-based poly­(l-lysine) (PLL) modifiers that improve transfection by imparting both pH buffering and nanoparticle stabilization functions within a single molecular unit. PLL modifiers were based on morpholine (M), morpholine and niacin (MN), or thiomorpholine (TM). PLL modification with (MN) or (TM) imparted buffering function over the pH range of 5–7 both in solution and live cells and enhanced the stability of PLL DNA nanoparticles, which exhibited higher resistance to polyanion exchange and prolonged blood circulation. These properties translated into increased transfection efficiency in vitro coupled with reduced toxicity compared to unmodified PLL and PLL­(M). Furthermore, PEG-PLL­(MN) DNA nanoparticles transfected muscle tissue in vivo for &gt;45 days following intramuscular injection. These polymer modifiers demonstrate the successful design of multifunctional units that improve transfection of synthetic gene delivery systems while maintaining biocompatibility.</description><issn>1525-7797</issn><issn>1526-4602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqVwAVZZlkWC_5LUSyhQKrWCBawtOxlLrpy42ClSdlyBK3ISUtI1qxlp3nua9yF0TXBGMCW3qoqZtr5RVYYrjAvCT9CE5LRIeYHp6d-ep2UpynN0EeMWYywYzydovYFOae9sB-m9ilAnG19bYyvVWd8m3iSv3vUz9_P17fpoW7hJjA_JqtkF_zmol9BC8gDOfkLoL9GZUS7C1XFO0fvT49viOV2_LFeLu3WqGBFdWhqqoNQVJowymDORG6XrmoCaKyE4p8QAzGtmcJ2TghENlArFtOY5ISVmbIpmY-7wxMceYicbGytwTrXg91FSzjjOmRjip4iO0ir4GAMYuQu2UaGXBMsDOjmgkyM6eUQ3mLLRdLht_T60Q5v_DL-3k3SI</recordid><startdate>20200914</startdate><enddate>20200914</enddate><creator>Urello, Morgan A</creator><creator>Xiang, Lucia</creator><creator>Colombo, Raffaele</creator><creator>Ma, Alexander</creator><creator>Joseph, Augustine</creator><creator>Boyd, Jonathan</creator><creator>Peterson, Norman</creator><creator>Gao, Changshou</creator><creator>Wu, Herren</creator><creator>Christie, R. James</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8369-804X</orcidid></search><sort><creationdate>20200914</creationdate><title>Metabolite-Based Modification of Poly(l‑lysine) for Improved Gene Delivery</title><author>Urello, Morgan A ; Xiang, Lucia ; Colombo, Raffaele ; Ma, Alexander ; Joseph, Augustine ; Boyd, Jonathan ; Peterson, Norman ; Gao, Changshou ; Wu, Herren ; Christie, R. James</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a319t-7f2ae7bc01323e8395fabdd1ea8a994421fee8d3f0d51631be229a3bb45117033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Urello, Morgan A</creatorcontrib><creatorcontrib>Xiang, Lucia</creatorcontrib><creatorcontrib>Colombo, Raffaele</creatorcontrib><creatorcontrib>Ma, Alexander</creatorcontrib><creatorcontrib>Joseph, Augustine</creatorcontrib><creatorcontrib>Boyd, Jonathan</creatorcontrib><creatorcontrib>Peterson, Norman</creatorcontrib><creatorcontrib>Gao, Changshou</creatorcontrib><creatorcontrib>Wu, Herren</creatorcontrib><creatorcontrib>Christie, R. James</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biomacromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Urello, Morgan A</au><au>Xiang, Lucia</au><au>Colombo, Raffaele</au><au>Ma, Alexander</au><au>Joseph, Augustine</au><au>Boyd, Jonathan</au><au>Peterson, Norman</au><au>Gao, Changshou</au><au>Wu, Herren</au><au>Christie, R. James</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolite-Based Modification of Poly(l‑lysine) for Improved Gene Delivery</atitle><jtitle>Biomacromolecules</jtitle><addtitle>Biomacromolecules</addtitle><date>2020-09-14</date><risdate>2020</risdate><volume>21</volume><issue>9</issue><spage>3596</spage><epage>3607</epage><pages>3596-3607</pages><issn>1525-7797</issn><eissn>1526-4602</eissn><abstract>Synthetic gene delivery systems employ multiple functions to enable safe and effective transport of DNA to target cells. Here, we describe metabolite-based poly­(l-lysine) (PLL) modifiers that improve transfection by imparting both pH buffering and nanoparticle stabilization functions within a single molecular unit. PLL modifiers were based on morpholine (M), morpholine and niacin (MN), or thiomorpholine (TM). PLL modification with (MN) or (TM) imparted buffering function over the pH range of 5–7 both in solution and live cells and enhanced the stability of PLL DNA nanoparticles, which exhibited higher resistance to polyanion exchange and prolonged blood circulation. These properties translated into increased transfection efficiency in vitro coupled with reduced toxicity compared to unmodified PLL and PLL­(M). Furthermore, PEG-PLL­(MN) DNA nanoparticles transfected muscle tissue in vivo for &gt;45 days following intramuscular injection. These polymer modifiers demonstrate the successful design of multifunctional units that improve transfection of synthetic gene delivery systems while maintaining biocompatibility.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.biomac.0c00614</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8369-804X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1525-7797
ispartof Biomacromolecules, 2020-09, Vol.21 (9), p.3596-3607
issn 1525-7797
1526-4602
language eng
recordid cdi_proquest_miscellaneous_2434053932
source ACS Publications
title Metabolite-Based Modification of Poly(l‑lysine) for Improved Gene Delivery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T02%3A28%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolite-Based%20Modification%20of%20Poly(l%E2%80%91lysine)%20for%20Improved%20Gene%20Delivery&rft.jtitle=Biomacromolecules&rft.au=Urello,%20Morgan%20A&rft.date=2020-09-14&rft.volume=21&rft.issue=9&rft.spage=3596&rft.epage=3607&rft.pages=3596-3607&rft.issn=1525-7797&rft.eissn=1526-4602&rft_id=info:doi/10.1021/acs.biomac.0c00614&rft_dat=%3Cproquest_cross%3E2434053932%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2434053932&rft_id=info:pmid/&rfr_iscdi=true