A Perspective on Deep Learning for Molecular Modeling and Simulations
Deep learning is transforming many areas in science, and it has great potential in modeling molecular systems. However, unlike the mature deployment of deep learning in computer vision and natural language processing, its development in molecular modeling and simulations is still at an early stage,...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2020-08, Vol.124 (34), p.6745-6763 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6763 |
---|---|
container_issue | 34 |
container_start_page | 6745 |
container_title | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory |
container_volume | 124 |
creator | Zhang, Jun Lei, Yao-Kun Zhang, Zhen Chang, Junhan Li, Maodong Han, Xu Yang, Lijiang Yang, Yi Isaac Gao, Yi Qin |
description | Deep learning is transforming many areas in science, and it has great potential in modeling molecular systems. However, unlike the mature deployment of deep learning in computer vision and natural language processing, its development in molecular modeling and simulations is still at an early stage, largely because the inductive biases of molecules are completely different from those of images or texts. Footed on these differences, we first reviewed the limitations of traditional deep learning models from the perspective of molecular physics and wrapped up some relevant technical advancement at the interface between molecular modeling and deep learning. We do not focus merely on the ever more complex neural network models; instead, we introduce various useful concepts and ideas brought by modern deep learning. We hope that transacting these ideas into molecular modeling will create new opportunities. For this purpose, we summarized several representative applications, ranging from supervised to unsupervised and reinforcement learning, and discussed their connections with the emerging trends in deep learning. Finally, we give an outlook for promising directions which may help address the existing issues in the current framework of deep molecular modeling. |
doi_str_mv | 10.1021/acs.jpca.0c04473 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2434053920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2434053920</sourcerecordid><originalsourceid>FETCH-LOGICAL-a336t-f806bf3e714f06ef52643f49f3b5e55cd0380cddf45222f7c6a82f22443cac683</originalsourceid><addsrcrecordid>eNp1kM1Lw0AUxBdRbK3ePUmOHkx9-5nkWGr9gIqCeg7bzVtJSbJxNxH8701s9ebpDcPMwPsRck5hToHRa23CfNsaPQcDQiT8gEypZBBLRuXhoCHNYql4NiEnIWwBgHImjsmEsyRVSqVTslpEz-hDi6YrPzFyTXSD2EZr1L4pm_fIOh89ugpNX-lRFViNtm6K6KWsB7MrXRNOyZHVVcCz_Z2Rt9vV6_I-Xj_dPSwX61hzrrrYpqA2lmNChQWFVjIluBWZ5RuJUpoCeAqmKKyQjDGbGKVTZhkTghttVMpn5HK323r30WPo8roMBqtKN-j6kDPBBUieMRiisIsa70LwaPPWl7X2XzmFfISXD_DyEV6-hzdULvbr_abG4q_wS2sIXO0CP1XX-2Z49v-9b5iReiA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434053920</pqid></control><display><type>article</type><title>A Perspective on Deep Learning for Molecular Modeling and Simulations</title><source>ACS Publications</source><creator>Zhang, Jun ; Lei, Yao-Kun ; Zhang, Zhen ; Chang, Junhan ; Li, Maodong ; Han, Xu ; Yang, Lijiang ; Yang, Yi Isaac ; Gao, Yi Qin</creator><creatorcontrib>Zhang, Jun ; Lei, Yao-Kun ; Zhang, Zhen ; Chang, Junhan ; Li, Maodong ; Han, Xu ; Yang, Lijiang ; Yang, Yi Isaac ; Gao, Yi Qin</creatorcontrib><description>Deep learning is transforming many areas in science, and it has great potential in modeling molecular systems. However, unlike the mature deployment of deep learning in computer vision and natural language processing, its development in molecular modeling and simulations is still at an early stage, largely because the inductive biases of molecules are completely different from those of images or texts. Footed on these differences, we first reviewed the limitations of traditional deep learning models from the perspective of molecular physics and wrapped up some relevant technical advancement at the interface between molecular modeling and deep learning. We do not focus merely on the ever more complex neural network models; instead, we introduce various useful concepts and ideas brought by modern deep learning. We hope that transacting these ideas into molecular modeling will create new opportunities. For this purpose, we summarized several representative applications, ranging from supervised to unsupervised and reinforcement learning, and discussed their connections with the emerging trends in deep learning. Finally, we give an outlook for promising directions which may help address the existing issues in the current framework of deep molecular modeling.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/acs.jpca.0c04473</identifier><identifier>PMID: 32786668</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2020-08, Vol.124 (34), p.6745-6763</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a336t-f806bf3e714f06ef52643f49f3b5e55cd0380cddf45222f7c6a82f22443cac683</citedby><cites>FETCH-LOGICAL-a336t-f806bf3e714f06ef52643f49f3b5e55cd0380cddf45222f7c6a82f22443cac683</cites><orcidid>0000-0002-4309-9376 ; 0000-0002-8760-6747 ; 0000-0002-5599-0975</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpca.0c04473$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpca.0c04473$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32786668$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Lei, Yao-Kun</creatorcontrib><creatorcontrib>Zhang, Zhen</creatorcontrib><creatorcontrib>Chang, Junhan</creatorcontrib><creatorcontrib>Li, Maodong</creatorcontrib><creatorcontrib>Han, Xu</creatorcontrib><creatorcontrib>Yang, Lijiang</creatorcontrib><creatorcontrib>Yang, Yi Isaac</creatorcontrib><creatorcontrib>Gao, Yi Qin</creatorcontrib><title>A Perspective on Deep Learning for Molecular Modeling and Simulations</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>Deep learning is transforming many areas in science, and it has great potential in modeling molecular systems. However, unlike the mature deployment of deep learning in computer vision and natural language processing, its development in molecular modeling and simulations is still at an early stage, largely because the inductive biases of molecules are completely different from those of images or texts. Footed on these differences, we first reviewed the limitations of traditional deep learning models from the perspective of molecular physics and wrapped up some relevant technical advancement at the interface between molecular modeling and deep learning. We do not focus merely on the ever more complex neural network models; instead, we introduce various useful concepts and ideas brought by modern deep learning. We hope that transacting these ideas into molecular modeling will create new opportunities. For this purpose, we summarized several representative applications, ranging from supervised to unsupervised and reinforcement learning, and discussed their connections with the emerging trends in deep learning. Finally, we give an outlook for promising directions which may help address the existing issues in the current framework of deep molecular modeling.</description><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Lw0AUxBdRbK3ePUmOHkx9-5nkWGr9gIqCeg7bzVtJSbJxNxH8701s9ebpDcPMwPsRck5hToHRa23CfNsaPQcDQiT8gEypZBBLRuXhoCHNYql4NiEnIWwBgHImjsmEsyRVSqVTslpEz-hDi6YrPzFyTXSD2EZr1L4pm_fIOh89ugpNX-lRFViNtm6K6KWsB7MrXRNOyZHVVcCz_Z2Rt9vV6_I-Xj_dPSwX61hzrrrYpqA2lmNChQWFVjIluBWZ5RuJUpoCeAqmKKyQjDGbGKVTZhkTghttVMpn5HK323r30WPo8roMBqtKN-j6kDPBBUieMRiisIsa70LwaPPWl7X2XzmFfISXD_DyEV6-hzdULvbr_abG4q_wS2sIXO0CP1XX-2Z49v-9b5iReiA</recordid><startdate>20200827</startdate><enddate>20200827</enddate><creator>Zhang, Jun</creator><creator>Lei, Yao-Kun</creator><creator>Zhang, Zhen</creator><creator>Chang, Junhan</creator><creator>Li, Maodong</creator><creator>Han, Xu</creator><creator>Yang, Lijiang</creator><creator>Yang, Yi Isaac</creator><creator>Gao, Yi Qin</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4309-9376</orcidid><orcidid>https://orcid.org/0000-0002-8760-6747</orcidid><orcidid>https://orcid.org/0000-0002-5599-0975</orcidid></search><sort><creationdate>20200827</creationdate><title>A Perspective on Deep Learning for Molecular Modeling and Simulations</title><author>Zhang, Jun ; Lei, Yao-Kun ; Zhang, Zhen ; Chang, Junhan ; Li, Maodong ; Han, Xu ; Yang, Lijiang ; Yang, Yi Isaac ; Gao, Yi Qin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a336t-f806bf3e714f06ef52643f49f3b5e55cd0380cddf45222f7c6a82f22443cac683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Lei, Yao-Kun</creatorcontrib><creatorcontrib>Zhang, Zhen</creatorcontrib><creatorcontrib>Chang, Junhan</creatorcontrib><creatorcontrib>Li, Maodong</creatorcontrib><creatorcontrib>Han, Xu</creatorcontrib><creatorcontrib>Yang, Lijiang</creatorcontrib><creatorcontrib>Yang, Yi Isaac</creatorcontrib><creatorcontrib>Gao, Yi Qin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jun</au><au>Lei, Yao-Kun</au><au>Zhang, Zhen</au><au>Chang, Junhan</au><au>Li, Maodong</au><au>Han, Xu</au><au>Yang, Lijiang</au><au>Yang, Yi Isaac</au><au>Gao, Yi Qin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Perspective on Deep Learning for Molecular Modeling and Simulations</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2020-08-27</date><risdate>2020</risdate><volume>124</volume><issue>34</issue><spage>6745</spage><epage>6763</epage><pages>6745-6763</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>Deep learning is transforming many areas in science, and it has great potential in modeling molecular systems. However, unlike the mature deployment of deep learning in computer vision and natural language processing, its development in molecular modeling and simulations is still at an early stage, largely because the inductive biases of molecules are completely different from those of images or texts. Footed on these differences, we first reviewed the limitations of traditional deep learning models from the perspective of molecular physics and wrapped up some relevant technical advancement at the interface between molecular modeling and deep learning. We do not focus merely on the ever more complex neural network models; instead, we introduce various useful concepts and ideas brought by modern deep learning. We hope that transacting these ideas into molecular modeling will create new opportunities. For this purpose, we summarized several representative applications, ranging from supervised to unsupervised and reinforcement learning, and discussed their connections with the emerging trends in deep learning. Finally, we give an outlook for promising directions which may help address the existing issues in the current framework of deep molecular modeling.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32786668</pmid><doi>10.1021/acs.jpca.0c04473</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-4309-9376</orcidid><orcidid>https://orcid.org/0000-0002-8760-6747</orcidid><orcidid>https://orcid.org/0000-0002-5599-0975</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1089-5639 |
ispartof | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2020-08, Vol.124 (34), p.6745-6763 |
issn | 1089-5639 1520-5215 |
language | eng |
recordid | cdi_proquest_miscellaneous_2434053920 |
source | ACS Publications |
title | A Perspective on Deep Learning for Molecular Modeling and Simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T04%3A08%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Perspective%20on%20Deep%20Learning%20for%20Molecular%20Modeling%20and%20Simulations&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Zhang,%20Jun&rft.date=2020-08-27&rft.volume=124&rft.issue=34&rft.spage=6745&rft.epage=6763&rft.pages=6745-6763&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/acs.jpca.0c04473&rft_dat=%3Cproquest_cross%3E2434053920%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2434053920&rft_id=info:pmid/32786668&rfr_iscdi=true |