A Perspective on Deep Learning for Molecular Modeling and Simulations

Deep learning is transforming many areas in science, and it has great potential in modeling molecular systems. However, unlike the mature deployment of deep learning in computer vision and natural language processing, its development in molecular modeling and simulations is still at an early stage,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2020-08, Vol.124 (34), p.6745-6763
Hauptverfasser: Zhang, Jun, Lei, Yao-Kun, Zhang, Zhen, Chang, Junhan, Li, Maodong, Han, Xu, Yang, Lijiang, Yang, Yi Isaac, Gao, Yi Qin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6763
container_issue 34
container_start_page 6745
container_title The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
container_volume 124
creator Zhang, Jun
Lei, Yao-Kun
Zhang, Zhen
Chang, Junhan
Li, Maodong
Han, Xu
Yang, Lijiang
Yang, Yi Isaac
Gao, Yi Qin
description Deep learning is transforming many areas in science, and it has great potential in modeling molecular systems. However, unlike the mature deployment of deep learning in computer vision and natural language processing, its development in molecular modeling and simulations is still at an early stage, largely because the inductive biases of molecules are completely different from those of images or texts. Footed on these differences, we first reviewed the limitations of traditional deep learning models from the perspective of molecular physics and wrapped up some relevant technical advancement at the interface between molecular modeling and deep learning. We do not focus merely on the ever more complex neural network models; instead, we introduce various useful concepts and ideas brought by modern deep learning. We hope that transacting these ideas into molecular modeling will create new opportunities. For this purpose, we summarized several representative applications, ranging from supervised to unsupervised and reinforcement learning, and discussed their connections with the emerging trends in deep learning. Finally, we give an outlook for promising directions which may help address the existing issues in the current framework of deep molecular modeling.
doi_str_mv 10.1021/acs.jpca.0c04473
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2434053920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2434053920</sourcerecordid><originalsourceid>FETCH-LOGICAL-a336t-f806bf3e714f06ef52643f49f3b5e55cd0380cddf45222f7c6a82f22443cac683</originalsourceid><addsrcrecordid>eNp1kM1Lw0AUxBdRbK3ePUmOHkx9-5nkWGr9gIqCeg7bzVtJSbJxNxH8701s9ebpDcPMwPsRck5hToHRa23CfNsaPQcDQiT8gEypZBBLRuXhoCHNYql4NiEnIWwBgHImjsmEsyRVSqVTslpEz-hDi6YrPzFyTXSD2EZr1L4pm_fIOh89ugpNX-lRFViNtm6K6KWsB7MrXRNOyZHVVcCz_Z2Rt9vV6_I-Xj_dPSwX61hzrrrYpqA2lmNChQWFVjIluBWZ5RuJUpoCeAqmKKyQjDGbGKVTZhkTghttVMpn5HK323r30WPo8roMBqtKN-j6kDPBBUieMRiisIsa70LwaPPWl7X2XzmFfISXD_DyEV6-hzdULvbr_abG4q_wS2sIXO0CP1XX-2Z49v-9b5iReiA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434053920</pqid></control><display><type>article</type><title>A Perspective on Deep Learning for Molecular Modeling and Simulations</title><source>ACS Publications</source><creator>Zhang, Jun ; Lei, Yao-Kun ; Zhang, Zhen ; Chang, Junhan ; Li, Maodong ; Han, Xu ; Yang, Lijiang ; Yang, Yi Isaac ; Gao, Yi Qin</creator><creatorcontrib>Zhang, Jun ; Lei, Yao-Kun ; Zhang, Zhen ; Chang, Junhan ; Li, Maodong ; Han, Xu ; Yang, Lijiang ; Yang, Yi Isaac ; Gao, Yi Qin</creatorcontrib><description>Deep learning is transforming many areas in science, and it has great potential in modeling molecular systems. However, unlike the mature deployment of deep learning in computer vision and natural language processing, its development in molecular modeling and simulations is still at an early stage, largely because the inductive biases of molecules are completely different from those of images or texts. Footed on these differences, we first reviewed the limitations of traditional deep learning models from the perspective of molecular physics and wrapped up some relevant technical advancement at the interface between molecular modeling and deep learning. We do not focus merely on the ever more complex neural network models; instead, we introduce various useful concepts and ideas brought by modern deep learning. We hope that transacting these ideas into molecular modeling will create new opportunities. For this purpose, we summarized several representative applications, ranging from supervised to unsupervised and reinforcement learning, and discussed their connections with the emerging trends in deep learning. Finally, we give an outlook for promising directions which may help address the existing issues in the current framework of deep molecular modeling.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/acs.jpca.0c04473</identifier><identifier>PMID: 32786668</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory, 2020-08, Vol.124 (34), p.6745-6763</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a336t-f806bf3e714f06ef52643f49f3b5e55cd0380cddf45222f7c6a82f22443cac683</citedby><cites>FETCH-LOGICAL-a336t-f806bf3e714f06ef52643f49f3b5e55cd0380cddf45222f7c6a82f22443cac683</cites><orcidid>0000-0002-4309-9376 ; 0000-0002-8760-6747 ; 0000-0002-5599-0975</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpca.0c04473$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpca.0c04473$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32786668$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Lei, Yao-Kun</creatorcontrib><creatorcontrib>Zhang, Zhen</creatorcontrib><creatorcontrib>Chang, Junhan</creatorcontrib><creatorcontrib>Li, Maodong</creatorcontrib><creatorcontrib>Han, Xu</creatorcontrib><creatorcontrib>Yang, Lijiang</creatorcontrib><creatorcontrib>Yang, Yi Isaac</creatorcontrib><creatorcontrib>Gao, Yi Qin</creatorcontrib><title>A Perspective on Deep Learning for Molecular Modeling and Simulations</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>Deep learning is transforming many areas in science, and it has great potential in modeling molecular systems. However, unlike the mature deployment of deep learning in computer vision and natural language processing, its development in molecular modeling and simulations is still at an early stage, largely because the inductive biases of molecules are completely different from those of images or texts. Footed on these differences, we first reviewed the limitations of traditional deep learning models from the perspective of molecular physics and wrapped up some relevant technical advancement at the interface between molecular modeling and deep learning. We do not focus merely on the ever more complex neural network models; instead, we introduce various useful concepts and ideas brought by modern deep learning. We hope that transacting these ideas into molecular modeling will create new opportunities. For this purpose, we summarized several representative applications, ranging from supervised to unsupervised and reinforcement learning, and discussed their connections with the emerging trends in deep learning. Finally, we give an outlook for promising directions which may help address the existing issues in the current framework of deep molecular modeling.</description><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Lw0AUxBdRbK3ePUmOHkx9-5nkWGr9gIqCeg7bzVtJSbJxNxH8701s9ebpDcPMwPsRck5hToHRa23CfNsaPQcDQiT8gEypZBBLRuXhoCHNYql4NiEnIWwBgHImjsmEsyRVSqVTslpEz-hDi6YrPzFyTXSD2EZr1L4pm_fIOh89ugpNX-lRFViNtm6K6KWsB7MrXRNOyZHVVcCz_Z2Rt9vV6_I-Xj_dPSwX61hzrrrYpqA2lmNChQWFVjIluBWZ5RuJUpoCeAqmKKyQjDGbGKVTZhkTghttVMpn5HK323r30WPo8roMBqtKN-j6kDPBBUieMRiisIsa70LwaPPWl7X2XzmFfISXD_DyEV6-hzdULvbr_abG4q_wS2sIXO0CP1XX-2Z49v-9b5iReiA</recordid><startdate>20200827</startdate><enddate>20200827</enddate><creator>Zhang, Jun</creator><creator>Lei, Yao-Kun</creator><creator>Zhang, Zhen</creator><creator>Chang, Junhan</creator><creator>Li, Maodong</creator><creator>Han, Xu</creator><creator>Yang, Lijiang</creator><creator>Yang, Yi Isaac</creator><creator>Gao, Yi Qin</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4309-9376</orcidid><orcidid>https://orcid.org/0000-0002-8760-6747</orcidid><orcidid>https://orcid.org/0000-0002-5599-0975</orcidid></search><sort><creationdate>20200827</creationdate><title>A Perspective on Deep Learning for Molecular Modeling and Simulations</title><author>Zhang, Jun ; Lei, Yao-Kun ; Zhang, Zhen ; Chang, Junhan ; Li, Maodong ; Han, Xu ; Yang, Lijiang ; Yang, Yi Isaac ; Gao, Yi Qin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a336t-f806bf3e714f06ef52643f49f3b5e55cd0380cddf45222f7c6a82f22443cac683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Lei, Yao-Kun</creatorcontrib><creatorcontrib>Zhang, Zhen</creatorcontrib><creatorcontrib>Chang, Junhan</creatorcontrib><creatorcontrib>Li, Maodong</creatorcontrib><creatorcontrib>Han, Xu</creatorcontrib><creatorcontrib>Yang, Lijiang</creatorcontrib><creatorcontrib>Yang, Yi Isaac</creatorcontrib><creatorcontrib>Gao, Yi Qin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jun</au><au>Lei, Yao-Kun</au><au>Zhang, Zhen</au><au>Chang, Junhan</au><au>Li, Maodong</au><au>Han, Xu</au><au>Yang, Lijiang</au><au>Yang, Yi Isaac</au><au>Gao, Yi Qin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Perspective on Deep Learning for Molecular Modeling and Simulations</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2020-08-27</date><risdate>2020</risdate><volume>124</volume><issue>34</issue><spage>6745</spage><epage>6763</epage><pages>6745-6763</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>Deep learning is transforming many areas in science, and it has great potential in modeling molecular systems. However, unlike the mature deployment of deep learning in computer vision and natural language processing, its development in molecular modeling and simulations is still at an early stage, largely because the inductive biases of molecules are completely different from those of images or texts. Footed on these differences, we first reviewed the limitations of traditional deep learning models from the perspective of molecular physics and wrapped up some relevant technical advancement at the interface between molecular modeling and deep learning. We do not focus merely on the ever more complex neural network models; instead, we introduce various useful concepts and ideas brought by modern deep learning. We hope that transacting these ideas into molecular modeling will create new opportunities. For this purpose, we summarized several representative applications, ranging from supervised to unsupervised and reinforcement learning, and discussed their connections with the emerging trends in deep learning. Finally, we give an outlook for promising directions which may help address the existing issues in the current framework of deep molecular modeling.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32786668</pmid><doi>10.1021/acs.jpca.0c04473</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-4309-9376</orcidid><orcidid>https://orcid.org/0000-0002-8760-6747</orcidid><orcidid>https://orcid.org/0000-0002-5599-0975</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1089-5639
ispartof The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2020-08, Vol.124 (34), p.6745-6763
issn 1089-5639
1520-5215
language eng
recordid cdi_proquest_miscellaneous_2434053920
source ACS Publications
title A Perspective on Deep Learning for Molecular Modeling and Simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T04%3A08%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Perspective%20on%20Deep%20Learning%20for%20Molecular%20Modeling%20and%20Simulations&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Zhang,%20Jun&rft.date=2020-08-27&rft.volume=124&rft.issue=34&rft.spage=6745&rft.epage=6763&rft.pages=6745-6763&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/acs.jpca.0c04473&rft_dat=%3Cproquest_cross%3E2434053920%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2434053920&rft_id=info:pmid/32786668&rfr_iscdi=true