Time in quantum measurements
The nonidealized statistical-mechanics description of quantum measurements developed by Blankenbecler and Partovi (1985) on the basis of a maximum-uncertainty principle is generalized to treat measurements at more than one time. Uncertainty relations between momentum and time and between energy and...
Gespeichert in:
Veröffentlicht in: | Phys. Rev. Lett.; (United States) 1986-12, Vol.57 (23), p.2887-2890 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2890 |
---|---|
container_issue | 23 |
container_start_page | 2887 |
container_title | Phys. Rev. Lett.; (United States) |
container_volume | 57 |
creator | PARTOVI, M. H BLANKENBECLER, R |
description | The nonidealized statistical-mechanics description of quantum measurements developed by Blankenbecler and Partovi (1985) on the basis of a maximum-uncertainty principle is generalized to treat measurements at more than one time. Uncertainty relations between momentum and time and between energy and time are derived analytically as consequences of the canonical commutation relations and discussed. A lower limit of 1/2 is determined for the product of the measurement duration (as determined by an external clock of arbitrary precision) and the energy dispersion of a free particle, and also for the product of the energy and time dispersions of any system used as a clock. (T.K.) |
doi_str_mv | 10.1103/PhysRevLett.57.2887 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_24339997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1859246471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-12191e5f44c89210e0c288ffb4407744e25260d773a6b30c9f487889e95d52d83</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRbK3-AkWKiHhJ3c_M7lGKX1BQpJ6X7WZCI01Ssxuh_97UFOnJ0xzmed8ZHkLOGZ0wRsXd23IT3vF7hjFOFEy41nBAhoyCSYAxeUiGlAqWGEphQE5C-KSUMp7qYzJg3UZoY4bkYl6UOC6q8VfrqtiW4xJdaBsssYrhlBzlbhXwbDdH5OPxYT59TmavTy_T-1nipYCYMM4MQ5VL6bXhjCL13TN5vpCSAkiJXPGUZgDCpQtBvcmlBq0NGpUpnmkxIld9bx1iYYMvIvqlr6sKfbQppMCBddBND62b-qvFEG1ZBI-rlauwboPlUghjDHTg7b8g08pwmcrfTtGjvqlDaDC366YoXbOxjNqtZLsn2SqwW8ld6nJ3oF2UmO1leqsdcL0DXPBulTeu8kX447QArSQXPw3ohAA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859246471</pqid></control><display><type>article</type><title>Time in quantum measurements</title><source>American Physical Society Journals</source><creator>PARTOVI, M. H ; BLANKENBECLER, R</creator><creatorcontrib>PARTOVI, M. H ; BLANKENBECLER, R ; Department of Physics, California State University, Sacramento, California 95819</creatorcontrib><description>The nonidealized statistical-mechanics description of quantum measurements developed by Blankenbecler and Partovi (1985) on the basis of a maximum-uncertainty principle is generalized to treat measurements at more than one time. Uncertainty relations between momentum and time and between energy and time are derived analytically as consequences of the canonical commutation relations and discussed. A lower limit of 1/2 is determined for the product of the measurement duration (as determined by an external clock of arbitrary precision) and the energy dispersion of a free particle, and also for the product of the energy and time dispersions of any system used as a clock. (T.K.)</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.57.2887</identifier><identifier>PMID: 10033899</identifier><identifier>CODEN: PRLTAO</identifier><language>eng</language><publisher>Ridge, NY: American Physical Society</publisher><subject>Applied sciences ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; COMMUTATION RELATIONS ; Exact sciences and technology ; HAMILTONIANS ; MATHEMATICAL OPERATORS ; MECHANICS 657002 -- Theoretical & Mathematical Physics-- Classical & Quantum Mechanics ; Other techniques and industries ; QUANTUM MECHANICS ; QUANTUM OPERATORS ; STATISTICAL MECHANICS ; TIME MEASUREMENT ; UNCERTAINTY PRINCIPLE</subject><ispartof>Phys. Rev. Lett.; (United States), 1986-12, Vol.57 (23), p.2887-2890</ispartof><rights>1987 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-12191e5f44c89210e0c288ffb4407744e25260d773a6b30c9f487889e95d52d83</citedby><cites>FETCH-LOGICAL-c437t-12191e5f44c89210e0c288ffb4407744e25260d773a6b30c9f487889e95d52d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,883,2865,2866,27911,27912</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8378542$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10033899$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6767271$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>PARTOVI, M. H</creatorcontrib><creatorcontrib>BLANKENBECLER, R</creatorcontrib><creatorcontrib>Department of Physics, California State University, Sacramento, California 95819</creatorcontrib><title>Time in quantum measurements</title><title>Phys. Rev. Lett.; (United States)</title><addtitle>Phys Rev Lett</addtitle><description>The nonidealized statistical-mechanics description of quantum measurements developed by Blankenbecler and Partovi (1985) on the basis of a maximum-uncertainty principle is generalized to treat measurements at more than one time. Uncertainty relations between momentum and time and between energy and time are derived analytically as consequences of the canonical commutation relations and discussed. A lower limit of 1/2 is determined for the product of the measurement duration (as determined by an external clock of arbitrary precision) and the energy dispersion of a free particle, and also for the product of the energy and time dispersions of any system used as a clock. (T.K.)</description><subject>Applied sciences</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>COMMUTATION RELATIONS</subject><subject>Exact sciences and technology</subject><subject>HAMILTONIANS</subject><subject>MATHEMATICAL OPERATORS</subject><subject>MECHANICS 657002 -- Theoretical & Mathematical Physics-- Classical & Quantum Mechanics</subject><subject>Other techniques and industries</subject><subject>QUANTUM MECHANICS</subject><subject>QUANTUM OPERATORS</subject><subject>STATISTICAL MECHANICS</subject><subject>TIME MEASUREMENT</subject><subject>UNCERTAINTY PRINCIPLE</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRbK3-AkWKiHhJ3c_M7lGKX1BQpJ6X7WZCI01Ssxuh_97UFOnJ0xzmed8ZHkLOGZ0wRsXd23IT3vF7hjFOFEy41nBAhoyCSYAxeUiGlAqWGEphQE5C-KSUMp7qYzJg3UZoY4bkYl6UOC6q8VfrqtiW4xJdaBsssYrhlBzlbhXwbDdH5OPxYT59TmavTy_T-1nipYCYMM4MQ5VL6bXhjCL13TN5vpCSAkiJXPGUZgDCpQtBvcmlBq0NGpUpnmkxIld9bx1iYYMvIvqlr6sKfbQppMCBddBND62b-qvFEG1ZBI-rlauwboPlUghjDHTg7b8g08pwmcrfTtGjvqlDaDC366YoXbOxjNqtZLsn2SqwW8ld6nJ3oF2UmO1leqsdcL0DXPBulTeu8kX447QArSQXPw3ohAA</recordid><startdate>19861208</startdate><enddate>19861208</enddate><creator>PARTOVI, M. H</creator><creator>BLANKENBECLER, R</creator><general>American Physical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>19861208</creationdate><title>Time in quantum measurements</title><author>PARTOVI, M. H ; BLANKENBECLER, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-12191e5f44c89210e0c288ffb4407744e25260d773a6b30c9f487889e95d52d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>Applied sciences</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>COMMUTATION RELATIONS</topic><topic>Exact sciences and technology</topic><topic>HAMILTONIANS</topic><topic>MATHEMATICAL OPERATORS</topic><topic>MECHANICS 657002 -- Theoretical & Mathematical Physics-- Classical & Quantum Mechanics</topic><topic>Other techniques and industries</topic><topic>QUANTUM MECHANICS</topic><topic>QUANTUM OPERATORS</topic><topic>STATISTICAL MECHANICS</topic><topic>TIME MEASUREMENT</topic><topic>UNCERTAINTY PRINCIPLE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>PARTOVI, M. H</creatorcontrib><creatorcontrib>BLANKENBECLER, R</creatorcontrib><creatorcontrib>Department of Physics, California State University, Sacramento, California 95819</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Phys. Rev. Lett.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>PARTOVI, M. H</au><au>BLANKENBECLER, R</au><aucorp>Department of Physics, California State University, Sacramento, California 95819</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time in quantum measurements</atitle><jtitle>Phys. Rev. Lett.; (United States)</jtitle><addtitle>Phys Rev Lett</addtitle><date>1986-12-08</date><risdate>1986</risdate><volume>57</volume><issue>23</issue><spage>2887</spage><epage>2890</epage><pages>2887-2890</pages><issn>0031-9007</issn><eissn>1079-7114</eissn><coden>PRLTAO</coden><abstract>The nonidealized statistical-mechanics description of quantum measurements developed by Blankenbecler and Partovi (1985) on the basis of a maximum-uncertainty principle is generalized to treat measurements at more than one time. Uncertainty relations between momentum and time and between energy and time are derived analytically as consequences of the canonical commutation relations and discussed. A lower limit of 1/2 is determined for the product of the measurement duration (as determined by an external clock of arbitrary precision) and the energy dispersion of a free particle, and also for the product of the energy and time dispersions of any system used as a clock. (T.K.)</abstract><cop>Ridge, NY</cop><pub>American Physical Society</pub><pmid>10033899</pmid><doi>10.1103/PhysRevLett.57.2887</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Phys. Rev. Lett.; (United States), 1986-12, Vol.57 (23), p.2887-2890 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_24339997 |
source | American Physical Society Journals |
subjects | Applied sciences CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS COMMUTATION RELATIONS Exact sciences and technology HAMILTONIANS MATHEMATICAL OPERATORS MECHANICS 657002 -- Theoretical & Mathematical Physics-- Classical & Quantum Mechanics Other techniques and industries QUANTUM MECHANICS QUANTUM OPERATORS STATISTICAL MECHANICS TIME MEASUREMENT UNCERTAINTY PRINCIPLE |
title | Time in quantum measurements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T14%3A58%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time%20in%20quantum%20measurements&rft.jtitle=Phys.%20Rev.%20Lett.;%20(United%20States)&rft.au=PARTOVI,%20M.%20H&rft.aucorp=Department%20of%20Physics,%20California%20State%20University,%20Sacramento,%20California%2095819&rft.date=1986-12-08&rft.volume=57&rft.issue=23&rft.spage=2887&rft.epage=2890&rft.pages=2887-2890&rft.issn=0031-9007&rft.eissn=1079-7114&rft.coden=PRLTAO&rft_id=info:doi/10.1103/PhysRevLett.57.2887&rft_dat=%3Cproquest_osti_%3E1859246471%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1859246471&rft_id=info:pmid/10033899&rfr_iscdi=true |