Time in quantum measurements

The nonidealized statistical-mechanics description of quantum measurements developed by Blankenbecler and Partovi (1985) on the basis of a maximum-uncertainty principle is generalized to treat measurements at more than one time. Uncertainty relations between momentum and time and between energy and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Phys. Rev. Lett.; (United States) 1986-12, Vol.57 (23), p.2887-2890
Hauptverfasser: PARTOVI, M. H, BLANKENBECLER, R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2890
container_issue 23
container_start_page 2887
container_title Phys. Rev. Lett.; (United States)
container_volume 57
creator PARTOVI, M. H
BLANKENBECLER, R
description The nonidealized statistical-mechanics description of quantum measurements developed by Blankenbecler and Partovi (1985) on the basis of a maximum-uncertainty principle is generalized to treat measurements at more than one time. Uncertainty relations between momentum and time and between energy and time are derived analytically as consequences of the canonical commutation relations and discussed. A lower limit of 1/2 is determined for the product of the measurement duration (as determined by an external clock of arbitrary precision) and the energy dispersion of a free particle, and also for the product of the energy and time dispersions of any system used as a clock. (T.K.)
doi_str_mv 10.1103/PhysRevLett.57.2887
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_24339997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1859246471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-12191e5f44c89210e0c288ffb4407744e25260d773a6b30c9f487889e95d52d83</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRbK3-AkWKiHhJ3c_M7lGKX1BQpJ6X7WZCI01Ssxuh_97UFOnJ0xzmed8ZHkLOGZ0wRsXd23IT3vF7hjFOFEy41nBAhoyCSYAxeUiGlAqWGEphQE5C-KSUMp7qYzJg3UZoY4bkYl6UOC6q8VfrqtiW4xJdaBsssYrhlBzlbhXwbDdH5OPxYT59TmavTy_T-1nipYCYMM4MQ5VL6bXhjCL13TN5vpCSAkiJXPGUZgDCpQtBvcmlBq0NGpUpnmkxIld9bx1iYYMvIvqlr6sKfbQppMCBddBND62b-qvFEG1ZBI-rlauwboPlUghjDHTg7b8g08pwmcrfTtGjvqlDaDC366YoXbOxjNqtZLsn2SqwW8ld6nJ3oF2UmO1leqsdcL0DXPBulTeu8kX447QArSQXPw3ohAA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859246471</pqid></control><display><type>article</type><title>Time in quantum measurements</title><source>American Physical Society Journals</source><creator>PARTOVI, M. H ; BLANKENBECLER, R</creator><creatorcontrib>PARTOVI, M. H ; BLANKENBECLER, R ; Department of Physics, California State University, Sacramento, California 95819</creatorcontrib><description>The nonidealized statistical-mechanics description of quantum measurements developed by Blankenbecler and Partovi (1985) on the basis of a maximum-uncertainty principle is generalized to treat measurements at more than one time. Uncertainty relations between momentum and time and between energy and time are derived analytically as consequences of the canonical commutation relations and discussed. A lower limit of 1/2 is determined for the product of the measurement duration (as determined by an external clock of arbitrary precision) and the energy dispersion of a free particle, and also for the product of the energy and time dispersions of any system used as a clock. (T.K.)</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.57.2887</identifier><identifier>PMID: 10033899</identifier><identifier>CODEN: PRLTAO</identifier><language>eng</language><publisher>Ridge, NY: American Physical Society</publisher><subject>Applied sciences ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; COMMUTATION RELATIONS ; Exact sciences and technology ; HAMILTONIANS ; MATHEMATICAL OPERATORS ; MECHANICS 657002 -- Theoretical &amp; Mathematical Physics-- Classical &amp; Quantum Mechanics ; Other techniques and industries ; QUANTUM MECHANICS ; QUANTUM OPERATORS ; STATISTICAL MECHANICS ; TIME MEASUREMENT ; UNCERTAINTY PRINCIPLE</subject><ispartof>Phys. Rev. Lett.; (United States), 1986-12, Vol.57 (23), p.2887-2890</ispartof><rights>1987 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-12191e5f44c89210e0c288ffb4407744e25260d773a6b30c9f487889e95d52d83</citedby><cites>FETCH-LOGICAL-c437t-12191e5f44c89210e0c288ffb4407744e25260d773a6b30c9f487889e95d52d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,883,2865,2866,27911,27912</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8378542$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10033899$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6767271$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>PARTOVI, M. H</creatorcontrib><creatorcontrib>BLANKENBECLER, R</creatorcontrib><creatorcontrib>Department of Physics, California State University, Sacramento, California 95819</creatorcontrib><title>Time in quantum measurements</title><title>Phys. Rev. Lett.; (United States)</title><addtitle>Phys Rev Lett</addtitle><description>The nonidealized statistical-mechanics description of quantum measurements developed by Blankenbecler and Partovi (1985) on the basis of a maximum-uncertainty principle is generalized to treat measurements at more than one time. Uncertainty relations between momentum and time and between energy and time are derived analytically as consequences of the canonical commutation relations and discussed. A lower limit of 1/2 is determined for the product of the measurement duration (as determined by an external clock of arbitrary precision) and the energy dispersion of a free particle, and also for the product of the energy and time dispersions of any system used as a clock. (T.K.)</description><subject>Applied sciences</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>COMMUTATION RELATIONS</subject><subject>Exact sciences and technology</subject><subject>HAMILTONIANS</subject><subject>MATHEMATICAL OPERATORS</subject><subject>MECHANICS 657002 -- Theoretical &amp; Mathematical Physics-- Classical &amp; Quantum Mechanics</subject><subject>Other techniques and industries</subject><subject>QUANTUM MECHANICS</subject><subject>QUANTUM OPERATORS</subject><subject>STATISTICAL MECHANICS</subject><subject>TIME MEASUREMENT</subject><subject>UNCERTAINTY PRINCIPLE</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRbK3-AkWKiHhJ3c_M7lGKX1BQpJ6X7WZCI01Ssxuh_97UFOnJ0xzmed8ZHkLOGZ0wRsXd23IT3vF7hjFOFEy41nBAhoyCSYAxeUiGlAqWGEphQE5C-KSUMp7qYzJg3UZoY4bkYl6UOC6q8VfrqtiW4xJdaBsssYrhlBzlbhXwbDdH5OPxYT59TmavTy_T-1nipYCYMM4MQ5VL6bXhjCL13TN5vpCSAkiJXPGUZgDCpQtBvcmlBq0NGpUpnmkxIld9bx1iYYMvIvqlr6sKfbQppMCBddBND62b-qvFEG1ZBI-rlauwboPlUghjDHTg7b8g08pwmcrfTtGjvqlDaDC366YoXbOxjNqtZLsn2SqwW8ld6nJ3oF2UmO1leqsdcL0DXPBulTeu8kX447QArSQXPw3ohAA</recordid><startdate>19861208</startdate><enddate>19861208</enddate><creator>PARTOVI, M. H</creator><creator>BLANKENBECLER, R</creator><general>American Physical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>19861208</creationdate><title>Time in quantum measurements</title><author>PARTOVI, M. H ; BLANKENBECLER, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-12191e5f44c89210e0c288ffb4407744e25260d773a6b30c9f487889e95d52d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>Applied sciences</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>COMMUTATION RELATIONS</topic><topic>Exact sciences and technology</topic><topic>HAMILTONIANS</topic><topic>MATHEMATICAL OPERATORS</topic><topic>MECHANICS 657002 -- Theoretical &amp; Mathematical Physics-- Classical &amp; Quantum Mechanics</topic><topic>Other techniques and industries</topic><topic>QUANTUM MECHANICS</topic><topic>QUANTUM OPERATORS</topic><topic>STATISTICAL MECHANICS</topic><topic>TIME MEASUREMENT</topic><topic>UNCERTAINTY PRINCIPLE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>PARTOVI, M. H</creatorcontrib><creatorcontrib>BLANKENBECLER, R</creatorcontrib><creatorcontrib>Department of Physics, California State University, Sacramento, California 95819</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Phys. Rev. Lett.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>PARTOVI, M. H</au><au>BLANKENBECLER, R</au><aucorp>Department of Physics, California State University, Sacramento, California 95819</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time in quantum measurements</atitle><jtitle>Phys. Rev. Lett.; (United States)</jtitle><addtitle>Phys Rev Lett</addtitle><date>1986-12-08</date><risdate>1986</risdate><volume>57</volume><issue>23</issue><spage>2887</spage><epage>2890</epage><pages>2887-2890</pages><issn>0031-9007</issn><eissn>1079-7114</eissn><coden>PRLTAO</coden><abstract>The nonidealized statistical-mechanics description of quantum measurements developed by Blankenbecler and Partovi (1985) on the basis of a maximum-uncertainty principle is generalized to treat measurements at more than one time. Uncertainty relations between momentum and time and between energy and time are derived analytically as consequences of the canonical commutation relations and discussed. A lower limit of 1/2 is determined for the product of the measurement duration (as determined by an external clock of arbitrary precision) and the energy dispersion of a free particle, and also for the product of the energy and time dispersions of any system used as a clock. (T.K.)</abstract><cop>Ridge, NY</cop><pub>American Physical Society</pub><pmid>10033899</pmid><doi>10.1103/PhysRevLett.57.2887</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Phys. Rev. Lett.; (United States), 1986-12, Vol.57 (23), p.2887-2890
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_24339997
source American Physical Society Journals
subjects Applied sciences
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
COMMUTATION RELATIONS
Exact sciences and technology
HAMILTONIANS
MATHEMATICAL OPERATORS
MECHANICS 657002 -- Theoretical & Mathematical Physics-- Classical & Quantum Mechanics
Other techniques and industries
QUANTUM MECHANICS
QUANTUM OPERATORS
STATISTICAL MECHANICS
TIME MEASUREMENT
UNCERTAINTY PRINCIPLE
title Time in quantum measurements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T14%3A58%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time%20in%20quantum%20measurements&rft.jtitle=Phys.%20Rev.%20Lett.;%20(United%20States)&rft.au=PARTOVI,%20M.%20H&rft.aucorp=Department%20of%20Physics,%20California%20State%20University,%20Sacramento,%20California%2095819&rft.date=1986-12-08&rft.volume=57&rft.issue=23&rft.spage=2887&rft.epage=2890&rft.pages=2887-2890&rft.issn=0031-9007&rft.eissn=1079-7114&rft.coden=PRLTAO&rft_id=info:doi/10.1103/PhysRevLett.57.2887&rft_dat=%3Cproquest_osti_%3E1859246471%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1859246471&rft_id=info:pmid/10033899&rfr_iscdi=true