Decoding multiclass motor imagery EEG from the same upper limb by combining Riemannian geometry features and partial least squares regression

Objective. Due to low spatial resolution and poor signal-to-noise ratio of electroencephalogram (EEG), high accuracy classifications still suffer from lots of obstacles in the context of motor imagery (MI)-based brain-machine interface (BMI) systems. Particularly, it is extremely challenging to deco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neural engineering 2020-08, Vol.17 (4), p.46029-046029
Hauptverfasser: Chu, Yaqi, Zhao, Xingang, Zou, Yijun, Xu, Weiliang, Song, Guoli, Han, Jianda, Zhao, Yiwen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!