Molecular physics of jumping nanodroplets

Next-generation processor-chip cooling devices and self-cleaning surfaces can be enhanced by a passive process that requires little to no electrical input, through coalescence-induced nanodroplet jumping. Here, we describe the crucial impact thermal capillary waves and ambient gas rarefaction have o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2020-10, Vol.12 (4), p.2631-2637
Hauptverfasser: Perumanath, Sreehari, Borg, Matthew K, Sprittles, James E, Enright, Ryan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2637
container_issue 4
container_start_page 2631
container_title Nanoscale
container_volume 12
creator Perumanath, Sreehari
Borg, Matthew K
Sprittles, James E
Enright, Ryan
description Next-generation processor-chip cooling devices and self-cleaning surfaces can be enhanced by a passive process that requires little to no electrical input, through coalescence-induced nanodroplet jumping. Here, we describe the crucial impact thermal capillary waves and ambient gas rarefaction have on enhancing/limiting the jumping speeds of nanodroplets on low adhesion surfaces. By using high-fidelity non-equilibrium molecular dynamics simulations in conjunction with well-resolved volume-of-fluid continuum calculations, we are able to quantify the different dissipation mechanisms that govern nanodroplet jumping at length scales that are currently difficult to access experimentally. We find that interfacial thermal capillary waves contribute to a large statistical spread of nanodroplet jumping speeds that range from 0-30 m s −1 , where the typical jumping speeds of micro/millimeter sized droplets are only up to a few m s −1 . As the gas surrounding these liquid droplets is no longer in thermodynamic equilibrium, we also show how the reduced external drag leads to increased jumping speeds. This work demonstrates that, in the viscous-dominated regime, the Ohnesorge number and viscosity ratio between the two phases alone are not sufficient, but that the thermal fluctuation number (Th) and the Knudsen number (Kn) are both needed to recover the relevant molecular physics at nanoscales. Our results and analysis suggest that these dimensionless parameters would be relevant for many other free-surface flow processes and applications that operate at the nanoscale. Quantifying the influence of thermal fluctuations and extreme rarefaction on nanodroplet jumping reveals their relevance to other nanoscale flow processes.
doi_str_mv 10.1039/d0nr03766d
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2432859717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2452988791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-2fbc8ad886867dae0553420ee3e7b7210381d10fac29a3d8d8c7a85f36f6c08a3</originalsourceid><addsrcrecordid>eNp90E1LxDAQBuAgCq6rF-9CxYsK1UnSJulRdv2CVUH0HLL50C7dpibtYf-90ZUVPHiaOTzMvLwIHWK4wECrSwNtAMoZM1toRKCAnFJOtjc7K3bRXowLAFZRRkfo7ME3Vg-NCln3voq1jpl32WJYdnX7lrWq9Sb4rrF93Ec7TjXRHvzMMXq9uX6Z3OWzp9v7ydUs1-lvnxM310IZIZhg3CgLZUkLAtZSy-ecpJQCGwxOaVIpaoQRmitROsoc0yAUHaPT9d0u-I_Bxl4u66ht06jW-iFKUlAiyopjnujJH7rwQ2hTuqRKUgnBK5zU-Vrp4GMM1sku1EsVVhKD_GpNTuHx-bu1acLHaxyi3rjfVmVnXDJH_xn6CdIic1E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2452988791</pqid></control><display><type>article</type><title>Molecular physics of jumping nanodroplets</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Perumanath, Sreehari ; Borg, Matthew K ; Sprittles, James E ; Enright, Ryan</creator><creatorcontrib>Perumanath, Sreehari ; Borg, Matthew K ; Sprittles, James E ; Enright, Ryan</creatorcontrib><description>Next-generation processor-chip cooling devices and self-cleaning surfaces can be enhanced by a passive process that requires little to no electrical input, through coalescence-induced nanodroplet jumping. Here, we describe the crucial impact thermal capillary waves and ambient gas rarefaction have on enhancing/limiting the jumping speeds of nanodroplets on low adhesion surfaces. By using high-fidelity non-equilibrium molecular dynamics simulations in conjunction with well-resolved volume-of-fluid continuum calculations, we are able to quantify the different dissipation mechanisms that govern nanodroplet jumping at length scales that are currently difficult to access experimentally. We find that interfacial thermal capillary waves contribute to a large statistical spread of nanodroplet jumping speeds that range from 0-30 m s −1 , where the typical jumping speeds of micro/millimeter sized droplets are only up to a few m s −1 . As the gas surrounding these liquid droplets is no longer in thermodynamic equilibrium, we also show how the reduced external drag leads to increased jumping speeds. This work demonstrates that, in the viscous-dominated regime, the Ohnesorge number and viscosity ratio between the two phases alone are not sufficient, but that the thermal fluctuation number (Th) and the Knudsen number (Kn) are both needed to recover the relevant molecular physics at nanoscales. Our results and analysis suggest that these dimensionless parameters would be relevant for many other free-surface flow processes and applications that operate at the nanoscale. Quantifying the influence of thermal fluctuations and extreme rarefaction on nanodroplet jumping reveals their relevance to other nanoscale flow processes.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d0nr03766d</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Capillary waves ; Coalescing ; Dimensionless analysis ; Drag reduction ; Droplets ; Free surfaces ; Microprocessors ; Molecular dynamics ; Molecular physics ; Rarefaction ; Thermodynamic equilibrium ; Viscosity ratio</subject><ispartof>Nanoscale, 2020-10, Vol.12 (4), p.2631-2637</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-2fbc8ad886867dae0553420ee3e7b7210381d10fac29a3d8d8c7a85f36f6c08a3</citedby><cites>FETCH-LOGICAL-c376t-2fbc8ad886867dae0553420ee3e7b7210381d10fac29a3d8d8c7a85f36f6c08a3</cites><orcidid>0000-0002-0455-2756 ; 0000-0002-7740-1932 ; 0000-0002-3911-6292 ; 0000-0002-4169-6468</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Perumanath, Sreehari</creatorcontrib><creatorcontrib>Borg, Matthew K</creatorcontrib><creatorcontrib>Sprittles, James E</creatorcontrib><creatorcontrib>Enright, Ryan</creatorcontrib><title>Molecular physics of jumping nanodroplets</title><title>Nanoscale</title><description>Next-generation processor-chip cooling devices and self-cleaning surfaces can be enhanced by a passive process that requires little to no electrical input, through coalescence-induced nanodroplet jumping. Here, we describe the crucial impact thermal capillary waves and ambient gas rarefaction have on enhancing/limiting the jumping speeds of nanodroplets on low adhesion surfaces. By using high-fidelity non-equilibrium molecular dynamics simulations in conjunction with well-resolved volume-of-fluid continuum calculations, we are able to quantify the different dissipation mechanisms that govern nanodroplet jumping at length scales that are currently difficult to access experimentally. We find that interfacial thermal capillary waves contribute to a large statistical spread of nanodroplet jumping speeds that range from 0-30 m s −1 , where the typical jumping speeds of micro/millimeter sized droplets are only up to a few m s −1 . As the gas surrounding these liquid droplets is no longer in thermodynamic equilibrium, we also show how the reduced external drag leads to increased jumping speeds. This work demonstrates that, in the viscous-dominated regime, the Ohnesorge number and viscosity ratio between the two phases alone are not sufficient, but that the thermal fluctuation number (Th) and the Knudsen number (Kn) are both needed to recover the relevant molecular physics at nanoscales. Our results and analysis suggest that these dimensionless parameters would be relevant for many other free-surface flow processes and applications that operate at the nanoscale. Quantifying the influence of thermal fluctuations and extreme rarefaction on nanodroplet jumping reveals their relevance to other nanoscale flow processes.</description><subject>Capillary waves</subject><subject>Coalescing</subject><subject>Dimensionless analysis</subject><subject>Drag reduction</subject><subject>Droplets</subject><subject>Free surfaces</subject><subject>Microprocessors</subject><subject>Molecular dynamics</subject><subject>Molecular physics</subject><subject>Rarefaction</subject><subject>Thermodynamic equilibrium</subject><subject>Viscosity ratio</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90E1LxDAQBuAgCq6rF-9CxYsK1UnSJulRdv2CVUH0HLL50C7dpibtYf-90ZUVPHiaOTzMvLwIHWK4wECrSwNtAMoZM1toRKCAnFJOtjc7K3bRXowLAFZRRkfo7ME3Vg-NCln3voq1jpl32WJYdnX7lrWq9Sb4rrF93Ec7TjXRHvzMMXq9uX6Z3OWzp9v7ydUs1-lvnxM310IZIZhg3CgLZUkLAtZSy-ecpJQCGwxOaVIpaoQRmitROsoc0yAUHaPT9d0u-I_Bxl4u66ht06jW-iFKUlAiyopjnujJH7rwQ2hTuqRKUgnBK5zU-Vrp4GMM1sku1EsVVhKD_GpNTuHx-bu1acLHaxyi3rjfVmVnXDJH_xn6CdIic1E</recordid><startdate>20201022</startdate><enddate>20201022</enddate><creator>Perumanath, Sreehari</creator><creator>Borg, Matthew K</creator><creator>Sprittles, James E</creator><creator>Enright, Ryan</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0455-2756</orcidid><orcidid>https://orcid.org/0000-0002-7740-1932</orcidid><orcidid>https://orcid.org/0000-0002-3911-6292</orcidid><orcidid>https://orcid.org/0000-0002-4169-6468</orcidid></search><sort><creationdate>20201022</creationdate><title>Molecular physics of jumping nanodroplets</title><author>Perumanath, Sreehari ; Borg, Matthew K ; Sprittles, James E ; Enright, Ryan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-2fbc8ad886867dae0553420ee3e7b7210381d10fac29a3d8d8c7a85f36f6c08a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Capillary waves</topic><topic>Coalescing</topic><topic>Dimensionless analysis</topic><topic>Drag reduction</topic><topic>Droplets</topic><topic>Free surfaces</topic><topic>Microprocessors</topic><topic>Molecular dynamics</topic><topic>Molecular physics</topic><topic>Rarefaction</topic><topic>Thermodynamic equilibrium</topic><topic>Viscosity ratio</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perumanath, Sreehari</creatorcontrib><creatorcontrib>Borg, Matthew K</creatorcontrib><creatorcontrib>Sprittles, James E</creatorcontrib><creatorcontrib>Enright, Ryan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perumanath, Sreehari</au><au>Borg, Matthew K</au><au>Sprittles, James E</au><au>Enright, Ryan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular physics of jumping nanodroplets</atitle><jtitle>Nanoscale</jtitle><date>2020-10-22</date><risdate>2020</risdate><volume>12</volume><issue>4</issue><spage>2631</spage><epage>2637</epage><pages>2631-2637</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Next-generation processor-chip cooling devices and self-cleaning surfaces can be enhanced by a passive process that requires little to no electrical input, through coalescence-induced nanodroplet jumping. Here, we describe the crucial impact thermal capillary waves and ambient gas rarefaction have on enhancing/limiting the jumping speeds of nanodroplets on low adhesion surfaces. By using high-fidelity non-equilibrium molecular dynamics simulations in conjunction with well-resolved volume-of-fluid continuum calculations, we are able to quantify the different dissipation mechanisms that govern nanodroplet jumping at length scales that are currently difficult to access experimentally. We find that interfacial thermal capillary waves contribute to a large statistical spread of nanodroplet jumping speeds that range from 0-30 m s −1 , where the typical jumping speeds of micro/millimeter sized droplets are only up to a few m s −1 . As the gas surrounding these liquid droplets is no longer in thermodynamic equilibrium, we also show how the reduced external drag leads to increased jumping speeds. This work demonstrates that, in the viscous-dominated regime, the Ohnesorge number and viscosity ratio between the two phases alone are not sufficient, but that the thermal fluctuation number (Th) and the Knudsen number (Kn) are both needed to recover the relevant molecular physics at nanoscales. Our results and analysis suggest that these dimensionless parameters would be relevant for many other free-surface flow processes and applications that operate at the nanoscale. Quantifying the influence of thermal fluctuations and extreme rarefaction on nanodroplet jumping reveals their relevance to other nanoscale flow processes.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0nr03766d</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0455-2756</orcidid><orcidid>https://orcid.org/0000-0002-7740-1932</orcidid><orcidid>https://orcid.org/0000-0002-3911-6292</orcidid><orcidid>https://orcid.org/0000-0002-4169-6468</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2020-10, Vol.12 (4), p.2631-2637
issn 2040-3364
2040-3372
language eng
recordid cdi_proquest_miscellaneous_2432859717
source Royal Society Of Chemistry Journals 2008-
subjects Capillary waves
Coalescing
Dimensionless analysis
Drag reduction
Droplets
Free surfaces
Microprocessors
Molecular dynamics
Molecular physics
Rarefaction
Thermodynamic equilibrium
Viscosity ratio
title Molecular physics of jumping nanodroplets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T08%3A13%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20physics%20of%20jumping%20nanodroplets&rft.jtitle=Nanoscale&rft.au=Perumanath,%20Sreehari&rft.date=2020-10-22&rft.volume=12&rft.issue=4&rft.spage=2631&rft.epage=2637&rft.pages=2631-2637&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d0nr03766d&rft_dat=%3Cproquest_cross%3E2452988791%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2452988791&rft_id=info:pmid/&rfr_iscdi=true