AMPK controls the axonal regenerative ability of dorsal root ganglia sensory neurons after spinal cord injury

Regeneration after injury occurs in axons that lie in the peripheral nervous system but fails in the central nervous system, thereby limiting functional recovery. Differences in axonal signalling in response to injury that might underpin this differential regenerative ability are poorly characterize...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature metabolism 2020-09, Vol.2 (9), p.918-933
Hauptverfasser: Kong, Guiping, Zhou, Luming, Serger, Elisabeth, Palmisano, Ilaria, De Virgiliis, Francesco, Hutson, Thomas H., Mclachlan, Eilidh, Freiwald, Anja, La Montanara, Paolo, Shkura, Kirill, Puttagunta, Radhika, Di Giovanni, Simone
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 933
container_issue 9
container_start_page 918
container_title Nature metabolism
container_volume 2
creator Kong, Guiping
Zhou, Luming
Serger, Elisabeth
Palmisano, Ilaria
De Virgiliis, Francesco
Hutson, Thomas H.
Mclachlan, Eilidh
Freiwald, Anja
La Montanara, Paolo
Shkura, Kirill
Puttagunta, Radhika
Di Giovanni, Simone
description Regeneration after injury occurs in axons that lie in the peripheral nervous system but fails in the central nervous system, thereby limiting functional recovery. Differences in axonal signalling in response to injury that might underpin this differential regenerative ability are poorly characterized. Combining axoplasmic proteomics from peripheral sciatic or central projecting dorsal root ganglion (DRG) axons with cell body RNA-seq, we uncover injury-dependent signalling pathways that are uniquely represented in peripheral versus central projecting sciatic DRG axons. We identify AMPK as a crucial regulator of axonal regenerative signalling that is specifically downregulated in injured peripheral, but not central, axons. We find that AMPK in DRG interacts with the 26S proteasome and its CaMKIIα-dependent regulatory subunit PSMC5 to promote AMPKα proteasomal degradation following sciatic axotomy. Conditional deletion of AMPKα1 promotes multiple regenerative signalling pathways after central axonal injury and stimulates robust axonal growth across the spinal cord injury site, suggesting inhibition of AMPK as a therapeutic strategy to enhance regeneration following spinal cord injury. Whereas peripheral axons regenerate well after injury, axons located in the central nervous system, such as in the spinal cord, do not. Kong et al. identify AMPK as a regulator of neuronal regeneration and show that deletion of AMPKα1 promotes regeneration of injured spinal cord axons in mice.
doi_str_mv 10.1038/s42255-020-0252-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2432854215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2432854215</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-65e89ba2d463a347f76243391d12a6f0f619a2d970801d7f4e02397ebda634863</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EolXpB7BBXrIJ-JXXsqp4iSJYwNpykklIldrFkyD69zhqQaxYWGPNvXMWh5Bzzq44k9k1KiHiOGKChReLSB6RaZgiijMujv_8J2SOuGaMCc4VF_kpmUiRplkm1ZRsFk8vj7R0tveuQ9q_AzVfzpqOemjAgjd9-xl2Rdu1_Y66mlbO4xg719PG2KZrDUWw6PyOWhi8s0hN3YOnuG1HUOl8RVu7HvzujJzUpkOYH-aMvN3evC7vo9Xz3cNysYpKFcs-SmLI8sKISiXSSJXWaSKUlDmvuDBJzeqE5yHNU5YxXqW1AiZknkJRmUSqLJEzcrnnbr37GAB7vWmxhK4zFtyAOtBEFivB41Dl-2rpHaKHWm99uzF-pznTo2i9F62DaD2K1jLcXBzwQ7GB6vfiR2soiH0BQ2Qb8HrtBh9k4D_UbxfCiLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2432854215</pqid></control><display><type>article</type><title>AMPK controls the axonal regenerative ability of dorsal root ganglia sensory neurons after spinal cord injury</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Kong, Guiping ; Zhou, Luming ; Serger, Elisabeth ; Palmisano, Ilaria ; De Virgiliis, Francesco ; Hutson, Thomas H. ; Mclachlan, Eilidh ; Freiwald, Anja ; La Montanara, Paolo ; Shkura, Kirill ; Puttagunta, Radhika ; Di Giovanni, Simone</creator><creatorcontrib>Kong, Guiping ; Zhou, Luming ; Serger, Elisabeth ; Palmisano, Ilaria ; De Virgiliis, Francesco ; Hutson, Thomas H. ; Mclachlan, Eilidh ; Freiwald, Anja ; La Montanara, Paolo ; Shkura, Kirill ; Puttagunta, Radhika ; Di Giovanni, Simone</creatorcontrib><description>Regeneration after injury occurs in axons that lie in the peripheral nervous system but fails in the central nervous system, thereby limiting functional recovery. Differences in axonal signalling in response to injury that might underpin this differential regenerative ability are poorly characterized. Combining axoplasmic proteomics from peripheral sciatic or central projecting dorsal root ganglion (DRG) axons with cell body RNA-seq, we uncover injury-dependent signalling pathways that are uniquely represented in peripheral versus central projecting sciatic DRG axons. We identify AMPK as a crucial regulator of axonal regenerative signalling that is specifically downregulated in injured peripheral, but not central, axons. We find that AMPK in DRG interacts with the 26S proteasome and its CaMKIIα-dependent regulatory subunit PSMC5 to promote AMPKα proteasomal degradation following sciatic axotomy. Conditional deletion of AMPKα1 promotes multiple regenerative signalling pathways after central axonal injury and stimulates robust axonal growth across the spinal cord injury site, suggesting inhibition of AMPK as a therapeutic strategy to enhance regeneration following spinal cord injury. Whereas peripheral axons regenerate well after injury, axons located in the central nervous system, such as in the spinal cord, do not. Kong et al. identify AMPK as a regulator of neuronal regeneration and show that deletion of AMPKα1 promotes regeneration of injured spinal cord axons in mice.</description><identifier>ISSN: 2522-5812</identifier><identifier>EISSN: 2522-5812</identifier><identifier>DOI: 10.1038/s42255-020-0252-3</identifier><identifier>PMID: 32778834</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/89 ; 14/19 ; 42 ; 42/44 ; 45 ; 45/91 ; 631/378 ; 631/443/319 ; 631/80 ; 64 ; 64/60 ; 82 ; 82/58 ; AMP-Activated Protein Kinases - metabolism ; Animals ; ATPases Associated with Diverse Cellular Activities - metabolism ; Axonal Transport ; Axons ; Axotomy ; Biomedical and Life Sciences ; Calcium-Calmodulin-Dependent Protein Kinase Type 2 - metabolism ; Female ; Ganglia, Spinal - metabolism ; Ganglia, Spinal - pathology ; Life Sciences ; Mice ; Mice, Inbred C57BL ; Nerve Regeneration ; Proteasome Endopeptidase Complex - metabolism ; Proteomics ; Sciatic Nerve - metabolism ; Sciatic Nerve - pathology ; Sensory Receptor Cells - metabolism ; Sensory Receptor Cells - pathology ; Spinal Cord Injuries - metabolism ; Spinal Cord Injuries - pathology</subject><ispartof>Nature metabolism, 2020-09, Vol.2 (9), p.918-933</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-65e89ba2d463a347f76243391d12a6f0f619a2d970801d7f4e02397ebda634863</citedby><cites>FETCH-LOGICAL-c453t-65e89ba2d463a347f76243391d12a6f0f619a2d970801d7f4e02397ebda634863</cites><orcidid>0000-0003-3154-5399 ; 0000-0002-7139-8090 ; 0000-0002-1722-0910 ; 0000-0001-7674-8064 ; 0000-0001-6795-2688</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s42255-020-0252-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s42255-020-0252-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32778834$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kong, Guiping</creatorcontrib><creatorcontrib>Zhou, Luming</creatorcontrib><creatorcontrib>Serger, Elisabeth</creatorcontrib><creatorcontrib>Palmisano, Ilaria</creatorcontrib><creatorcontrib>De Virgiliis, Francesco</creatorcontrib><creatorcontrib>Hutson, Thomas H.</creatorcontrib><creatorcontrib>Mclachlan, Eilidh</creatorcontrib><creatorcontrib>Freiwald, Anja</creatorcontrib><creatorcontrib>La Montanara, Paolo</creatorcontrib><creatorcontrib>Shkura, Kirill</creatorcontrib><creatorcontrib>Puttagunta, Radhika</creatorcontrib><creatorcontrib>Di Giovanni, Simone</creatorcontrib><title>AMPK controls the axonal regenerative ability of dorsal root ganglia sensory neurons after spinal cord injury</title><title>Nature metabolism</title><addtitle>Nat Metab</addtitle><addtitle>Nat Metab</addtitle><description>Regeneration after injury occurs in axons that lie in the peripheral nervous system but fails in the central nervous system, thereby limiting functional recovery. Differences in axonal signalling in response to injury that might underpin this differential regenerative ability are poorly characterized. Combining axoplasmic proteomics from peripheral sciatic or central projecting dorsal root ganglion (DRG) axons with cell body RNA-seq, we uncover injury-dependent signalling pathways that are uniquely represented in peripheral versus central projecting sciatic DRG axons. We identify AMPK as a crucial regulator of axonal regenerative signalling that is specifically downregulated in injured peripheral, but not central, axons. We find that AMPK in DRG interacts with the 26S proteasome and its CaMKIIα-dependent regulatory subunit PSMC5 to promote AMPKα proteasomal degradation following sciatic axotomy. Conditional deletion of AMPKα1 promotes multiple regenerative signalling pathways after central axonal injury and stimulates robust axonal growth across the spinal cord injury site, suggesting inhibition of AMPK as a therapeutic strategy to enhance regeneration following spinal cord injury. Whereas peripheral axons regenerate well after injury, axons located in the central nervous system, such as in the spinal cord, do not. Kong et al. identify AMPK as a regulator of neuronal regeneration and show that deletion of AMPKα1 promotes regeneration of injured spinal cord axons in mice.</description><subject>13/89</subject><subject>14/19</subject><subject>42</subject><subject>42/44</subject><subject>45</subject><subject>45/91</subject><subject>631/378</subject><subject>631/443/319</subject><subject>631/80</subject><subject>64</subject><subject>64/60</subject><subject>82</subject><subject>82/58</subject><subject>AMP-Activated Protein Kinases - metabolism</subject><subject>Animals</subject><subject>ATPases Associated with Diverse Cellular Activities - metabolism</subject><subject>Axonal Transport</subject><subject>Axons</subject><subject>Axotomy</subject><subject>Biomedical and Life Sciences</subject><subject>Calcium-Calmodulin-Dependent Protein Kinase Type 2 - metabolism</subject><subject>Female</subject><subject>Ganglia, Spinal - metabolism</subject><subject>Ganglia, Spinal - pathology</subject><subject>Life Sciences</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Nerve Regeneration</subject><subject>Proteasome Endopeptidase Complex - metabolism</subject><subject>Proteomics</subject><subject>Sciatic Nerve - metabolism</subject><subject>Sciatic Nerve - pathology</subject><subject>Sensory Receptor Cells - metabolism</subject><subject>Sensory Receptor Cells - pathology</subject><subject>Spinal Cord Injuries - metabolism</subject><subject>Spinal Cord Injuries - pathology</subject><issn>2522-5812</issn><issn>2522-5812</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtOwzAQRS0EolXpB7BBXrIJ-JXXsqp4iSJYwNpykklIldrFkyD69zhqQaxYWGPNvXMWh5Bzzq44k9k1KiHiOGKChReLSB6RaZgiijMujv_8J2SOuGaMCc4VF_kpmUiRplkm1ZRsFk8vj7R0tveuQ9q_AzVfzpqOemjAgjd9-xl2Rdu1_Y66mlbO4xg719PG2KZrDUWw6PyOWhi8s0hN3YOnuG1HUOl8RVu7HvzujJzUpkOYH-aMvN3evC7vo9Xz3cNysYpKFcs-SmLI8sKISiXSSJXWaSKUlDmvuDBJzeqE5yHNU5YxXqW1AiZknkJRmUSqLJEzcrnnbr37GAB7vWmxhK4zFtyAOtBEFivB41Dl-2rpHaKHWm99uzF-pznTo2i9F62DaD2K1jLcXBzwQ7GB6vfiR2soiH0BQ2Qb8HrtBh9k4D_UbxfCiLw</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Kong, Guiping</creator><creator>Zhou, Luming</creator><creator>Serger, Elisabeth</creator><creator>Palmisano, Ilaria</creator><creator>De Virgiliis, Francesco</creator><creator>Hutson, Thomas H.</creator><creator>Mclachlan, Eilidh</creator><creator>Freiwald, Anja</creator><creator>La Montanara, Paolo</creator><creator>Shkura, Kirill</creator><creator>Puttagunta, Radhika</creator><creator>Di Giovanni, Simone</creator><general>Nature Publishing Group UK</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3154-5399</orcidid><orcidid>https://orcid.org/0000-0002-7139-8090</orcidid><orcidid>https://orcid.org/0000-0002-1722-0910</orcidid><orcidid>https://orcid.org/0000-0001-7674-8064</orcidid><orcidid>https://orcid.org/0000-0001-6795-2688</orcidid></search><sort><creationdate>20200901</creationdate><title>AMPK controls the axonal regenerative ability of dorsal root ganglia sensory neurons after spinal cord injury</title><author>Kong, Guiping ; Zhou, Luming ; Serger, Elisabeth ; Palmisano, Ilaria ; De Virgiliis, Francesco ; Hutson, Thomas H. ; Mclachlan, Eilidh ; Freiwald, Anja ; La Montanara, Paolo ; Shkura, Kirill ; Puttagunta, Radhika ; Di Giovanni, Simone</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-65e89ba2d463a347f76243391d12a6f0f619a2d970801d7f4e02397ebda634863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>13/89</topic><topic>14/19</topic><topic>42</topic><topic>42/44</topic><topic>45</topic><topic>45/91</topic><topic>631/378</topic><topic>631/443/319</topic><topic>631/80</topic><topic>64</topic><topic>64/60</topic><topic>82</topic><topic>82/58</topic><topic>AMP-Activated Protein Kinases - metabolism</topic><topic>Animals</topic><topic>ATPases Associated with Diverse Cellular Activities - metabolism</topic><topic>Axonal Transport</topic><topic>Axons</topic><topic>Axotomy</topic><topic>Biomedical and Life Sciences</topic><topic>Calcium-Calmodulin-Dependent Protein Kinase Type 2 - metabolism</topic><topic>Female</topic><topic>Ganglia, Spinal - metabolism</topic><topic>Ganglia, Spinal - pathology</topic><topic>Life Sciences</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Nerve Regeneration</topic><topic>Proteasome Endopeptidase Complex - metabolism</topic><topic>Proteomics</topic><topic>Sciatic Nerve - metabolism</topic><topic>Sciatic Nerve - pathology</topic><topic>Sensory Receptor Cells - metabolism</topic><topic>Sensory Receptor Cells - pathology</topic><topic>Spinal Cord Injuries - metabolism</topic><topic>Spinal Cord Injuries - pathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kong, Guiping</creatorcontrib><creatorcontrib>Zhou, Luming</creatorcontrib><creatorcontrib>Serger, Elisabeth</creatorcontrib><creatorcontrib>Palmisano, Ilaria</creatorcontrib><creatorcontrib>De Virgiliis, Francesco</creatorcontrib><creatorcontrib>Hutson, Thomas H.</creatorcontrib><creatorcontrib>Mclachlan, Eilidh</creatorcontrib><creatorcontrib>Freiwald, Anja</creatorcontrib><creatorcontrib>La Montanara, Paolo</creatorcontrib><creatorcontrib>Shkura, Kirill</creatorcontrib><creatorcontrib>Puttagunta, Radhika</creatorcontrib><creatorcontrib>Di Giovanni, Simone</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nature metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kong, Guiping</au><au>Zhou, Luming</au><au>Serger, Elisabeth</au><au>Palmisano, Ilaria</au><au>De Virgiliis, Francesco</au><au>Hutson, Thomas H.</au><au>Mclachlan, Eilidh</au><au>Freiwald, Anja</au><au>La Montanara, Paolo</au><au>Shkura, Kirill</au><au>Puttagunta, Radhika</au><au>Di Giovanni, Simone</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AMPK controls the axonal regenerative ability of dorsal root ganglia sensory neurons after spinal cord injury</atitle><jtitle>Nature metabolism</jtitle><stitle>Nat Metab</stitle><addtitle>Nat Metab</addtitle><date>2020-09-01</date><risdate>2020</risdate><volume>2</volume><issue>9</issue><spage>918</spage><epage>933</epage><pages>918-933</pages><issn>2522-5812</issn><eissn>2522-5812</eissn><abstract>Regeneration after injury occurs in axons that lie in the peripheral nervous system but fails in the central nervous system, thereby limiting functional recovery. Differences in axonal signalling in response to injury that might underpin this differential regenerative ability are poorly characterized. Combining axoplasmic proteomics from peripheral sciatic or central projecting dorsal root ganglion (DRG) axons with cell body RNA-seq, we uncover injury-dependent signalling pathways that are uniquely represented in peripheral versus central projecting sciatic DRG axons. We identify AMPK as a crucial regulator of axonal regenerative signalling that is specifically downregulated in injured peripheral, but not central, axons. We find that AMPK in DRG interacts with the 26S proteasome and its CaMKIIα-dependent regulatory subunit PSMC5 to promote AMPKα proteasomal degradation following sciatic axotomy. Conditional deletion of AMPKα1 promotes multiple regenerative signalling pathways after central axonal injury and stimulates robust axonal growth across the spinal cord injury site, suggesting inhibition of AMPK as a therapeutic strategy to enhance regeneration following spinal cord injury. Whereas peripheral axons regenerate well after injury, axons located in the central nervous system, such as in the spinal cord, do not. Kong et al. identify AMPK as a regulator of neuronal regeneration and show that deletion of AMPKα1 promotes regeneration of injured spinal cord axons in mice.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32778834</pmid><doi>10.1038/s42255-020-0252-3</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-3154-5399</orcidid><orcidid>https://orcid.org/0000-0002-7139-8090</orcidid><orcidid>https://orcid.org/0000-0002-1722-0910</orcidid><orcidid>https://orcid.org/0000-0001-7674-8064</orcidid><orcidid>https://orcid.org/0000-0001-6795-2688</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2522-5812
ispartof Nature metabolism, 2020-09, Vol.2 (9), p.918-933
issn 2522-5812
2522-5812
language eng
recordid cdi_proquest_miscellaneous_2432854215
source MEDLINE; SpringerLink Journals
subjects 13/89
14/19
42
42/44
45
45/91
631/378
631/443/319
631/80
64
64/60
82
82/58
AMP-Activated Protein Kinases - metabolism
Animals
ATPases Associated with Diverse Cellular Activities - metabolism
Axonal Transport
Axons
Axotomy
Biomedical and Life Sciences
Calcium-Calmodulin-Dependent Protein Kinase Type 2 - metabolism
Female
Ganglia, Spinal - metabolism
Ganglia, Spinal - pathology
Life Sciences
Mice
Mice, Inbred C57BL
Nerve Regeneration
Proteasome Endopeptidase Complex - metabolism
Proteomics
Sciatic Nerve - metabolism
Sciatic Nerve - pathology
Sensory Receptor Cells - metabolism
Sensory Receptor Cells - pathology
Spinal Cord Injuries - metabolism
Spinal Cord Injuries - pathology
title AMPK controls the axonal regenerative ability of dorsal root ganglia sensory neurons after spinal cord injury
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T02%3A47%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AMPK%20controls%20the%20axonal%20regenerative%20ability%20of%20dorsal%20root%20ganglia%20sensory%20neurons%20after%20spinal%20cord%20injury&rft.jtitle=Nature%20metabolism&rft.au=Kong,%20Guiping&rft.date=2020-09-01&rft.volume=2&rft.issue=9&rft.spage=918&rft.epage=933&rft.pages=918-933&rft.issn=2522-5812&rft.eissn=2522-5812&rft_id=info:doi/10.1038/s42255-020-0252-3&rft_dat=%3Cproquest_cross%3E2432854215%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2432854215&rft_id=info:pmid/32778834&rfr_iscdi=true