Fine-Needle Aspiration-Based Patient-Derived Cancer Organoids
Patient-derived cancer organoids hold great potential to accurately model and predict therapeutic responses. Efficient organoid isolation methods that minimize post-collection manipulation of tissues would improve adaptability, accuracy, and applicability to both experimental and real-time clinical...
Gespeichert in:
Veröffentlicht in: | iScience 2020-08, Vol.23 (8), p.101408, Article 101408 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | 101408 |
container_title | iScience |
container_volume | 23 |
creator | Vilgelm, Anna E. Bergdorf, Kensey Wolf, Melissa Bharti, Vijaya Shattuck-Brandt, Rebecca Blevins, Ashlyn Jones, Caroline Phifer, Courtney Lee, Mason Lowe, Cindy Hongo, Rachel Boyd, Kelli Netterville, James Rohde, Sarah Idrees, Kamran Bauer, Joshua A. Westover, David Reinfeld, Bradley Baregamian, Naira Richmond, Ann Rathmell, W. Kimryn Lee, Ethan McDonald, Oliver G. Weiss, Vivian L. |
description | Patient-derived cancer organoids hold great potential to accurately model and predict therapeutic responses. Efficient organoid isolation methods that minimize post-collection manipulation of tissues would improve adaptability, accuracy, and applicability to both experimental and real-time clinical settings. Here we present a simple and minimally invasive fine-needle aspiration (FNA)-based organoid culture technique using a variety of tumor types including gastrointestinal, thyroid, melanoma, and kidney. This method isolates organoids directly from patients at the bedside or from resected tissues, requiring minimal tissue processing while preserving the histologic growth patterns and infiltrating immune cells. Finally, we illustrate diverse downstream applications of this technique including in vitro high-throughput chemotherapeutic screens, in situ immune cell characterization, and in vivo patient-derived xenografts. Thus, routine clinical FNA-based collection techniques represent an unappreciated substantial source of material that can be exploited to generate tumor organoids from a variety of tumor types for both discovery and clinical applications.
[Display omitted]
•Fine-needle aspiration (FNA) is safe, minimally invasive, and widely used clinically•FNA is a source of material for organoid culture and personalized medicine•This technique requires minimal processing, preserving histology, and immune cells•Downstream applications: high-throughput screens, immune analysis, and xenografts
Clinical Medicine; Tissue Engineering; Cancer |
doi_str_mv | 10.1016/j.isci.2020.101408 |
format | Article |
fullrecord | <record><control><sourceid>proquest_elsev</sourceid><recordid>TN_cdi_proquest_miscellaneous_2432431396</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2589004220305988</els_id><doaj_id>oai_doaj_org_article_8afed6fb0a4e4ebb9491411bebb640fc</doaj_id><sourcerecordid>2432431396</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-f66ea9534b0f1ce03fd3e6beaa78409bbcc4fd0bbfed2325570a172686ca05523</originalsourceid><addsrcrecordid>eNqNkVFv0zAUhSMEYtO2P8AD6iMSSrl2HCeRAGkExiZNGw_wbNnOdXGVxsVOi_j33Dal2l7QJEu-ts859vWXZa8YzBkw-W4598n6OQe-3xBQP8tOeVk3OYDgzx_UJ9lFSksAUgIXjXyZnRS8qlhT1afZhys_YH6H2PU4u0xrH_Xow5B_0gm72Tda4DDmnzH6La1bPViMs_u40EPwXTrPXjjdJ7w4zGfZj6sv39vr_Pb-6017eZvbkrMxd1KibspCGHDMIhSuK1Aa1LqqBTTGWCtcB8Y47HjBy7ICzSoua2k1lCUvzrKbKbcLeqnW0a90_KOC9mq_EeJC6Th626OqNYVIZ0ALFGhMIxomGDNUSgHOUtbHKWu9MSvsLPUXdf8o9PHJ4H-qRdiqSrCy4RUFvDkExPBrg2lUK0KBfa8HDJukuChosKKRJOWT1MaQUkR3vIaB2mFUS7XDqHYY1YSRTK8fPvBo-QeNBPUk-I0mOLIjUTnKCHRZMUItYce89eOeaBs2w0jWt0-3kvr9pEZiu_UY1cHR-Yh2pM_3_2vkL-Alz1M</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2432431396</pqid></control><display><type>article</type><title>Fine-Needle Aspiration-Based Patient-Derived Cancer Organoids</title><source>DOAJ Directory of Open Access Journals</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Vilgelm, Anna E. ; Bergdorf, Kensey ; Wolf, Melissa ; Bharti, Vijaya ; Shattuck-Brandt, Rebecca ; Blevins, Ashlyn ; Jones, Caroline ; Phifer, Courtney ; Lee, Mason ; Lowe, Cindy ; Hongo, Rachel ; Boyd, Kelli ; Netterville, James ; Rohde, Sarah ; Idrees, Kamran ; Bauer, Joshua A. ; Westover, David ; Reinfeld, Bradley ; Baregamian, Naira ; Richmond, Ann ; Rathmell, W. Kimryn ; Lee, Ethan ; McDonald, Oliver G. ; Weiss, Vivian L.</creator><creatorcontrib>Vilgelm, Anna E. ; Bergdorf, Kensey ; Wolf, Melissa ; Bharti, Vijaya ; Shattuck-Brandt, Rebecca ; Blevins, Ashlyn ; Jones, Caroline ; Phifer, Courtney ; Lee, Mason ; Lowe, Cindy ; Hongo, Rachel ; Boyd, Kelli ; Netterville, James ; Rohde, Sarah ; Idrees, Kamran ; Bauer, Joshua A. ; Westover, David ; Reinfeld, Bradley ; Baregamian, Naira ; Richmond, Ann ; Rathmell, W. Kimryn ; Lee, Ethan ; McDonald, Oliver G. ; Weiss, Vivian L.</creatorcontrib><description>Patient-derived cancer organoids hold great potential to accurately model and predict therapeutic responses. Efficient organoid isolation methods that minimize post-collection manipulation of tissues would improve adaptability, accuracy, and applicability to both experimental and real-time clinical settings. Here we present a simple and minimally invasive fine-needle aspiration (FNA)-based organoid culture technique using a variety of tumor types including gastrointestinal, thyroid, melanoma, and kidney. This method isolates organoids directly from patients at the bedside or from resected tissues, requiring minimal tissue processing while preserving the histologic growth patterns and infiltrating immune cells. Finally, we illustrate diverse downstream applications of this technique including in vitro high-throughput chemotherapeutic screens, in situ immune cell characterization, and in vivo patient-derived xenografts. Thus, routine clinical FNA-based collection techniques represent an unappreciated substantial source of material that can be exploited to generate tumor organoids from a variety of tumor types for both discovery and clinical applications.
[Display omitted]
•Fine-needle aspiration (FNA) is safe, minimally invasive, and widely used clinically•FNA is a source of material for organoid culture and personalized medicine•This technique requires minimal processing, preserving histology, and immune cells•Downstream applications: high-throughput screens, immune analysis, and xenografts
Clinical Medicine; Tissue Engineering; Cancer</description><identifier>ISSN: 2589-0042</identifier><identifier>EISSN: 2589-0042</identifier><identifier>DOI: 10.1016/j.isci.2020.101408</identifier><identifier>PMID: 32771978</identifier><language>eng</language><publisher>CAMBRIDGE: Elsevier Inc</publisher><subject>Cancer ; Clinical Medicine ; Multidisciplinary Sciences ; Science & Technology ; Science & Technology - Other Topics ; Tissue Engineering</subject><ispartof>iScience, 2020-08, Vol.23 (8), p.101408, Article 101408</ispartof><rights>2020 The Authors</rights><rights>Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2020 The Authors 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>46</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000571002600002</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c521t-f66ea9534b0f1ce03fd3e6beaa78409bbcc4fd0bbfed2325570a172686ca05523</citedby><cites>FETCH-LOGICAL-c521t-f66ea9534b0f1ce03fd3e6beaa78409bbcc4fd0bbfed2325570a172686ca05523</cites><orcidid>0000-0002-9857-2474 ; 0000-0001-9692-7393 ; 0000-0001-8405-6156 ; 0000-0001-8772-3567 ; 0000-0003-4161-8301 ; 0000-0002-1616-3774 ; 0000-0003-2163-3221 ; 0000-0003-3321-4040 ; 0000-0002-9580-900X ; 0000-0003-0874-3207</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7415927/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7415927/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2106,2118,27933,27934,28257,53800,53802</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32771978$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vilgelm, Anna E.</creatorcontrib><creatorcontrib>Bergdorf, Kensey</creatorcontrib><creatorcontrib>Wolf, Melissa</creatorcontrib><creatorcontrib>Bharti, Vijaya</creatorcontrib><creatorcontrib>Shattuck-Brandt, Rebecca</creatorcontrib><creatorcontrib>Blevins, Ashlyn</creatorcontrib><creatorcontrib>Jones, Caroline</creatorcontrib><creatorcontrib>Phifer, Courtney</creatorcontrib><creatorcontrib>Lee, Mason</creatorcontrib><creatorcontrib>Lowe, Cindy</creatorcontrib><creatorcontrib>Hongo, Rachel</creatorcontrib><creatorcontrib>Boyd, Kelli</creatorcontrib><creatorcontrib>Netterville, James</creatorcontrib><creatorcontrib>Rohde, Sarah</creatorcontrib><creatorcontrib>Idrees, Kamran</creatorcontrib><creatorcontrib>Bauer, Joshua A.</creatorcontrib><creatorcontrib>Westover, David</creatorcontrib><creatorcontrib>Reinfeld, Bradley</creatorcontrib><creatorcontrib>Baregamian, Naira</creatorcontrib><creatorcontrib>Richmond, Ann</creatorcontrib><creatorcontrib>Rathmell, W. Kimryn</creatorcontrib><creatorcontrib>Lee, Ethan</creatorcontrib><creatorcontrib>McDonald, Oliver G.</creatorcontrib><creatorcontrib>Weiss, Vivian L.</creatorcontrib><title>Fine-Needle Aspiration-Based Patient-Derived Cancer Organoids</title><title>iScience</title><addtitle>ISCIENCE</addtitle><addtitle>iScience</addtitle><description>Patient-derived cancer organoids hold great potential to accurately model and predict therapeutic responses. Efficient organoid isolation methods that minimize post-collection manipulation of tissues would improve adaptability, accuracy, and applicability to both experimental and real-time clinical settings. Here we present a simple and minimally invasive fine-needle aspiration (FNA)-based organoid culture technique using a variety of tumor types including gastrointestinal, thyroid, melanoma, and kidney. This method isolates organoids directly from patients at the bedside or from resected tissues, requiring minimal tissue processing while preserving the histologic growth patterns and infiltrating immune cells. Finally, we illustrate diverse downstream applications of this technique including in vitro high-throughput chemotherapeutic screens, in situ immune cell characterization, and in vivo patient-derived xenografts. Thus, routine clinical FNA-based collection techniques represent an unappreciated substantial source of material that can be exploited to generate tumor organoids from a variety of tumor types for both discovery and clinical applications.
[Display omitted]
•Fine-needle aspiration (FNA) is safe, minimally invasive, and widely used clinically•FNA is a source of material for organoid culture and personalized medicine•This technique requires minimal processing, preserving histology, and immune cells•Downstream applications: high-throughput screens, immune analysis, and xenografts
Clinical Medicine; Tissue Engineering; Cancer</description><subject>Cancer</subject><subject>Clinical Medicine</subject><subject>Multidisciplinary Sciences</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><subject>Tissue Engineering</subject><issn>2589-0042</issn><issn>2589-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>DOA</sourceid><recordid>eNqNkVFv0zAUhSMEYtO2P8AD6iMSSrl2HCeRAGkExiZNGw_wbNnOdXGVxsVOi_j33Dal2l7QJEu-ts859vWXZa8YzBkw-W4598n6OQe-3xBQP8tOeVk3OYDgzx_UJ9lFSksAUgIXjXyZnRS8qlhT1afZhys_YH6H2PU4u0xrH_Xow5B_0gm72Tda4DDmnzH6La1bPViMs_u40EPwXTrPXjjdJ7w4zGfZj6sv39vr_Pb-6017eZvbkrMxd1KibspCGHDMIhSuK1Aa1LqqBTTGWCtcB8Y47HjBy7ICzSoua2k1lCUvzrKbKbcLeqnW0a90_KOC9mq_EeJC6Th626OqNYVIZ0ALFGhMIxomGDNUSgHOUtbHKWu9MSvsLPUXdf8o9PHJ4H-qRdiqSrCy4RUFvDkExPBrg2lUK0KBfa8HDJukuChosKKRJOWT1MaQUkR3vIaB2mFUS7XDqHYY1YSRTK8fPvBo-QeNBPUk-I0mOLIjUTnKCHRZMUItYce89eOeaBs2w0jWt0-3kvr9pEZiu_UY1cHR-Yh2pM_3_2vkL-Alz1M</recordid><startdate>20200821</startdate><enddate>20200821</enddate><creator>Vilgelm, Anna E.</creator><creator>Bergdorf, Kensey</creator><creator>Wolf, Melissa</creator><creator>Bharti, Vijaya</creator><creator>Shattuck-Brandt, Rebecca</creator><creator>Blevins, Ashlyn</creator><creator>Jones, Caroline</creator><creator>Phifer, Courtney</creator><creator>Lee, Mason</creator><creator>Lowe, Cindy</creator><creator>Hongo, Rachel</creator><creator>Boyd, Kelli</creator><creator>Netterville, James</creator><creator>Rohde, Sarah</creator><creator>Idrees, Kamran</creator><creator>Bauer, Joshua A.</creator><creator>Westover, David</creator><creator>Reinfeld, Bradley</creator><creator>Baregamian, Naira</creator><creator>Richmond, Ann</creator><creator>Rathmell, W. Kimryn</creator><creator>Lee, Ethan</creator><creator>McDonald, Oliver G.</creator><creator>Weiss, Vivian L.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9857-2474</orcidid><orcidid>https://orcid.org/0000-0001-9692-7393</orcidid><orcidid>https://orcid.org/0000-0001-8405-6156</orcidid><orcidid>https://orcid.org/0000-0001-8772-3567</orcidid><orcidid>https://orcid.org/0000-0003-4161-8301</orcidid><orcidid>https://orcid.org/0000-0002-1616-3774</orcidid><orcidid>https://orcid.org/0000-0003-2163-3221</orcidid><orcidid>https://orcid.org/0000-0003-3321-4040</orcidid><orcidid>https://orcid.org/0000-0002-9580-900X</orcidid><orcidid>https://orcid.org/0000-0003-0874-3207</orcidid></search><sort><creationdate>20200821</creationdate><title>Fine-Needle Aspiration-Based Patient-Derived Cancer Organoids</title><author>Vilgelm, Anna E. ; Bergdorf, Kensey ; Wolf, Melissa ; Bharti, Vijaya ; Shattuck-Brandt, Rebecca ; Blevins, Ashlyn ; Jones, Caroline ; Phifer, Courtney ; Lee, Mason ; Lowe, Cindy ; Hongo, Rachel ; Boyd, Kelli ; Netterville, James ; Rohde, Sarah ; Idrees, Kamran ; Bauer, Joshua A. ; Westover, David ; Reinfeld, Bradley ; Baregamian, Naira ; Richmond, Ann ; Rathmell, W. Kimryn ; Lee, Ethan ; McDonald, Oliver G. ; Weiss, Vivian L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-f66ea9534b0f1ce03fd3e6beaa78409bbcc4fd0bbfed2325570a172686ca05523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cancer</topic><topic>Clinical Medicine</topic><topic>Multidisciplinary Sciences</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><topic>Tissue Engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vilgelm, Anna E.</creatorcontrib><creatorcontrib>Bergdorf, Kensey</creatorcontrib><creatorcontrib>Wolf, Melissa</creatorcontrib><creatorcontrib>Bharti, Vijaya</creatorcontrib><creatorcontrib>Shattuck-Brandt, Rebecca</creatorcontrib><creatorcontrib>Blevins, Ashlyn</creatorcontrib><creatorcontrib>Jones, Caroline</creatorcontrib><creatorcontrib>Phifer, Courtney</creatorcontrib><creatorcontrib>Lee, Mason</creatorcontrib><creatorcontrib>Lowe, Cindy</creatorcontrib><creatorcontrib>Hongo, Rachel</creatorcontrib><creatorcontrib>Boyd, Kelli</creatorcontrib><creatorcontrib>Netterville, James</creatorcontrib><creatorcontrib>Rohde, Sarah</creatorcontrib><creatorcontrib>Idrees, Kamran</creatorcontrib><creatorcontrib>Bauer, Joshua A.</creatorcontrib><creatorcontrib>Westover, David</creatorcontrib><creatorcontrib>Reinfeld, Bradley</creatorcontrib><creatorcontrib>Baregamian, Naira</creatorcontrib><creatorcontrib>Richmond, Ann</creatorcontrib><creatorcontrib>Rathmell, W. Kimryn</creatorcontrib><creatorcontrib>Lee, Ethan</creatorcontrib><creatorcontrib>McDonald, Oliver G.</creatorcontrib><creatorcontrib>Weiss, Vivian L.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>iScience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vilgelm, Anna E.</au><au>Bergdorf, Kensey</au><au>Wolf, Melissa</au><au>Bharti, Vijaya</au><au>Shattuck-Brandt, Rebecca</au><au>Blevins, Ashlyn</au><au>Jones, Caroline</au><au>Phifer, Courtney</au><au>Lee, Mason</au><au>Lowe, Cindy</au><au>Hongo, Rachel</au><au>Boyd, Kelli</au><au>Netterville, James</au><au>Rohde, Sarah</au><au>Idrees, Kamran</au><au>Bauer, Joshua A.</au><au>Westover, David</au><au>Reinfeld, Bradley</au><au>Baregamian, Naira</au><au>Richmond, Ann</au><au>Rathmell, W. Kimryn</au><au>Lee, Ethan</au><au>McDonald, Oliver G.</au><au>Weiss, Vivian L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fine-Needle Aspiration-Based Patient-Derived Cancer Organoids</atitle><jtitle>iScience</jtitle><stitle>ISCIENCE</stitle><addtitle>iScience</addtitle><date>2020-08-21</date><risdate>2020</risdate><volume>23</volume><issue>8</issue><spage>101408</spage><pages>101408-</pages><artnum>101408</artnum><issn>2589-0042</issn><eissn>2589-0042</eissn><abstract>Patient-derived cancer organoids hold great potential to accurately model and predict therapeutic responses. Efficient organoid isolation methods that minimize post-collection manipulation of tissues would improve adaptability, accuracy, and applicability to both experimental and real-time clinical settings. Here we present a simple and minimally invasive fine-needle aspiration (FNA)-based organoid culture technique using a variety of tumor types including gastrointestinal, thyroid, melanoma, and kidney. This method isolates organoids directly from patients at the bedside or from resected tissues, requiring minimal tissue processing while preserving the histologic growth patterns and infiltrating immune cells. Finally, we illustrate diverse downstream applications of this technique including in vitro high-throughput chemotherapeutic screens, in situ immune cell characterization, and in vivo patient-derived xenografts. Thus, routine clinical FNA-based collection techniques represent an unappreciated substantial source of material that can be exploited to generate tumor organoids from a variety of tumor types for both discovery and clinical applications.
[Display omitted]
•Fine-needle aspiration (FNA) is safe, minimally invasive, and widely used clinically•FNA is a source of material for organoid culture and personalized medicine•This technique requires minimal processing, preserving histology, and immune cells•Downstream applications: high-throughput screens, immune analysis, and xenografts
Clinical Medicine; Tissue Engineering; Cancer</abstract><cop>CAMBRIDGE</cop><pub>Elsevier Inc</pub><pmid>32771978</pmid><doi>10.1016/j.isci.2020.101408</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-9857-2474</orcidid><orcidid>https://orcid.org/0000-0001-9692-7393</orcidid><orcidid>https://orcid.org/0000-0001-8405-6156</orcidid><orcidid>https://orcid.org/0000-0001-8772-3567</orcidid><orcidid>https://orcid.org/0000-0003-4161-8301</orcidid><orcidid>https://orcid.org/0000-0002-1616-3774</orcidid><orcidid>https://orcid.org/0000-0003-2163-3221</orcidid><orcidid>https://orcid.org/0000-0003-3321-4040</orcidid><orcidid>https://orcid.org/0000-0002-9580-900X</orcidid><orcidid>https://orcid.org/0000-0003-0874-3207</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2589-0042 |
ispartof | iScience, 2020-08, Vol.23 (8), p.101408, Article 101408 |
issn | 2589-0042 2589-0042 |
language | eng |
recordid | cdi_proquest_miscellaneous_2432431396 |
source | DOAJ Directory of Open Access Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Cancer Clinical Medicine Multidisciplinary Sciences Science & Technology Science & Technology - Other Topics Tissue Engineering |
title | Fine-Needle Aspiration-Based Patient-Derived Cancer Organoids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-30T05%3A39%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_elsev&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fine-Needle%20Aspiration-Based%20Patient-Derived%20Cancer%20Organoids&rft.jtitle=iScience&rft.au=Vilgelm,%20Anna%20E.&rft.date=2020-08-21&rft.volume=23&rft.issue=8&rft.spage=101408&rft.pages=101408-&rft.artnum=101408&rft.issn=2589-0042&rft.eissn=2589-0042&rft_id=info:doi/10.1016/j.isci.2020.101408&rft_dat=%3Cproquest_elsev%3E2432431396%3C/proquest_elsev%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2432431396&rft_id=info:pmid/32771978&rft_els_id=S2589004220305988&rft_doaj_id=oai_doaj_org_article_8afed6fb0a4e4ebb9491411bebb640fc&rfr_iscdi=true |