The role of vibronic modes in formation of red antenna states of cyanobacterial PSI

Cyanobacterial photosystem I (PSI) constitutes monomeric and trimeric pigment–protein complexes whose optical properties are marked by the presence of long-wavelength absorption bands. In spite of numerous experimental studies, the nature of these bands is still under debate and requires intensive t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Photosynthesis research 2020-12, Vol.146 (1-3), p.75-86
Hauptverfasser: Pishchalnikov, Roman Y., Shubin, Vladimir. V., Razjivin, Andrei. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 86
container_issue 1-3
container_start_page 75
container_title Photosynthesis research
container_volume 146
creator Pishchalnikov, Roman Y.
Shubin, Vladimir. V.
Razjivin, Andrei. P.
description Cyanobacterial photosystem I (PSI) constitutes monomeric and trimeric pigment–protein complexes whose optical properties are marked by the presence of long-wavelength absorption bands. In spite of numerous experimental studies, the nature of these bands is still under debate and requires intensive theoretical analysis. Collecting together the data of linear spectroscopy and single-molecule spectroscopy (SMS) of PSI from Arthrospira platensis , we performed quantum modeling of the optical response based on molecular exciton theory (ET) and the multimode Brownian oscillator model (MBOM). Applying MBOM, the spectra of the red antenna state were calculated considering a particular for each red state adjustment of the low-frequency vibronic modes. Within the framework of our PSI exciton model it was shown that the coupling energy between antenna chlorophylls cannot be a factor of the red states formation, thus the long-wavelength bands are calculated without attribution to so-called antenna red chlorophylls. By the fitting of Huang–Rhys factors and frequencies for the lowest vibronic modes, we were able to reproduce the effects of strong and weak electron–phonon coupling experimentally observed in SMS spectra of red antenna states. Based on our theoretical calculations and also analysis of existing crystal structures of cyanobacterial PSI, we assumed that long-wavelength Chls can be localized in the peripheral protein subunits containing one or two pigment molecules.
doi_str_mv 10.1007/s11120-020-00779-y
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2431825261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A639207180</galeid><sourcerecordid>A639207180</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-bf1f43707431e613947a51d87ac91cf05b9927548fe33bde755d2b999444ac543</originalsourceid><addsrcrecordid>eNp9kU9r3DAQxUVpabbbfoEeiqGX9uBUsiTLOobQPwuBhmx6FrI82irYUirJofvtK-O0JTkEMQhmfu8x0kPoLcGnBGPxKRFCGlzjpbAQsj4-QxvCBa05FvI52mDStnXHJT9Br1K6wRh3LaEv0QltRNtK2W7Q_vonVDGMUAVb3bk-Bu9MNYUBUuV8ZUOcdHbBL-MIQ6V9Bu91lbLOBSldc9Q-9NpkiE6P1eV-9xq9sHpM8Ob-3qIfXz5fn3-rL75_3Z2fXdSGsS7XvSWWUYEFowTKXpIJzcnQCW0kMRbzXspGcNZZoLQfQHA-NKUnGWPacEa36MPqexvDrxlSVpNLBsZRewhzUk0x7hreFO8tev8IvQlz9GW7QgnCu_JhC3W6Ugc9gnLehhy1KWeAyZngwbrSP2upbLAgHS6Cjw8EhcnwOx_0nJLa7a8ess3KmhhSimDVbXSTjkdFsFryVGueCi-15KmORfTufu-5n2D4J_kbYAHoCqQy8geI_x_2hO0f7FaoTw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471580791</pqid></control><display><type>article</type><title>The role of vibronic modes in formation of red antenna states of cyanobacterial PSI</title><source>SpringerLink Journals</source><creator>Pishchalnikov, Roman Y. ; Shubin, Vladimir. V. ; Razjivin, Andrei. P.</creator><creatorcontrib>Pishchalnikov, Roman Y. ; Shubin, Vladimir. V. ; Razjivin, Andrei. P.</creatorcontrib><description>Cyanobacterial photosystem I (PSI) constitutes monomeric and trimeric pigment–protein complexes whose optical properties are marked by the presence of long-wavelength absorption bands. In spite of numerous experimental studies, the nature of these bands is still under debate and requires intensive theoretical analysis. Collecting together the data of linear spectroscopy and single-molecule spectroscopy (SMS) of PSI from Arthrospira platensis , we performed quantum modeling of the optical response based on molecular exciton theory (ET) and the multimode Brownian oscillator model (MBOM). Applying MBOM, the spectra of the red antenna state were calculated considering a particular for each red state adjustment of the low-frequency vibronic modes. Within the framework of our PSI exciton model it was shown that the coupling energy between antenna chlorophylls cannot be a factor of the red states formation, thus the long-wavelength bands are calculated without attribution to so-called antenna red chlorophylls. By the fitting of Huang–Rhys factors and frequencies for the lowest vibronic modes, we were able to reproduce the effects of strong and weak electron–phonon coupling experimentally observed in SMS spectra of red antenna states. Based on our theoretical calculations and also analysis of existing crystal structures of cyanobacterial PSI, we assumed that long-wavelength Chls can be localized in the peripheral protein subunits containing one or two pigment molecules.</description><identifier>ISSN: 0166-8595</identifier><identifier>EISSN: 1573-5079</identifier><identifier>DOI: 10.1007/s11120-020-00779-y</identifier><identifier>PMID: 32766996</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Analysis ; Antennas ; Antennas (Electronics) ; Biochemistry ; Biomedical and Life Sciences ; Crystals ; Life Sciences ; Optical properties ; Original Article ; Photosystem I ; Plant Genetics and Genomics ; Plant Physiology ; Plant Sciences ; Spectroscopy ; Spectrum analysis ; Structure ; Wavelength</subject><ispartof>Photosynthesis research, 2020-12, Vol.146 (1-3), p.75-86</ispartof><rights>Springer Nature B.V. 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer Nature B.V. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-bf1f43707431e613947a51d87ac91cf05b9927548fe33bde755d2b999444ac543</citedby><cites>FETCH-LOGICAL-c448t-bf1f43707431e613947a51d87ac91cf05b9927548fe33bde755d2b999444ac543</cites><orcidid>0000-0002-5955-6092</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11120-020-00779-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11120-020-00779-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32766996$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pishchalnikov, Roman Y.</creatorcontrib><creatorcontrib>Shubin, Vladimir. V.</creatorcontrib><creatorcontrib>Razjivin, Andrei. P.</creatorcontrib><title>The role of vibronic modes in formation of red antenna states of cyanobacterial PSI</title><title>Photosynthesis research</title><addtitle>Photosynth Res</addtitle><addtitle>Photosynth Res</addtitle><description>Cyanobacterial photosystem I (PSI) constitutes monomeric and trimeric pigment–protein complexes whose optical properties are marked by the presence of long-wavelength absorption bands. In spite of numerous experimental studies, the nature of these bands is still under debate and requires intensive theoretical analysis. Collecting together the data of linear spectroscopy and single-molecule spectroscopy (SMS) of PSI from Arthrospira platensis , we performed quantum modeling of the optical response based on molecular exciton theory (ET) and the multimode Brownian oscillator model (MBOM). Applying MBOM, the spectra of the red antenna state were calculated considering a particular for each red state adjustment of the low-frequency vibronic modes. Within the framework of our PSI exciton model it was shown that the coupling energy between antenna chlorophylls cannot be a factor of the red states formation, thus the long-wavelength bands are calculated without attribution to so-called antenna red chlorophylls. By the fitting of Huang–Rhys factors and frequencies for the lowest vibronic modes, we were able to reproduce the effects of strong and weak electron–phonon coupling experimentally observed in SMS spectra of red antenna states. Based on our theoretical calculations and also analysis of existing crystal structures of cyanobacterial PSI, we assumed that long-wavelength Chls can be localized in the peripheral protein subunits containing one or two pigment molecules.</description><subject>Analysis</subject><subject>Antennas</subject><subject>Antennas (Electronics)</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Crystals</subject><subject>Life Sciences</subject><subject>Optical properties</subject><subject>Original Article</subject><subject>Photosystem I</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Physiology</subject><subject>Plant Sciences</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Structure</subject><subject>Wavelength</subject><issn>0166-8595</issn><issn>1573-5079</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU9r3DAQxUVpabbbfoEeiqGX9uBUsiTLOobQPwuBhmx6FrI82irYUirJofvtK-O0JTkEMQhmfu8x0kPoLcGnBGPxKRFCGlzjpbAQsj4-QxvCBa05FvI52mDStnXHJT9Br1K6wRh3LaEv0QltRNtK2W7Q_vonVDGMUAVb3bk-Bu9MNYUBUuV8ZUOcdHbBL-MIQ6V9Bu91lbLOBSldc9Q-9NpkiE6P1eV-9xq9sHpM8Ob-3qIfXz5fn3-rL75_3Z2fXdSGsS7XvSWWUYEFowTKXpIJzcnQCW0kMRbzXspGcNZZoLQfQHA-NKUnGWPacEa36MPqexvDrxlSVpNLBsZRewhzUk0x7hreFO8tev8IvQlz9GW7QgnCu_JhC3W6Ugc9gnLehhy1KWeAyZngwbrSP2upbLAgHS6Cjw8EhcnwOx_0nJLa7a8ess3KmhhSimDVbXSTjkdFsFryVGueCi-15KmORfTufu-5n2D4J_kbYAHoCqQy8geI_x_2hO0f7FaoTw</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Pishchalnikov, Roman Y.</creator><creator>Shubin, Vladimir. V.</creator><creator>Razjivin, Andrei. P.</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5955-6092</orcidid></search><sort><creationdate>20201201</creationdate><title>The role of vibronic modes in formation of red antenna states of cyanobacterial PSI</title><author>Pishchalnikov, Roman Y. ; Shubin, Vladimir. V. ; Razjivin, Andrei. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-bf1f43707431e613947a51d87ac91cf05b9927548fe33bde755d2b999444ac543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Antennas</topic><topic>Antennas (Electronics)</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Crystals</topic><topic>Life Sciences</topic><topic>Optical properties</topic><topic>Original Article</topic><topic>Photosystem I</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Physiology</topic><topic>Plant Sciences</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Structure</topic><topic>Wavelength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pishchalnikov, Roman Y.</creatorcontrib><creatorcontrib>Shubin, Vladimir. V.</creatorcontrib><creatorcontrib>Razjivin, Andrei. P.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Photosynthesis research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pishchalnikov, Roman Y.</au><au>Shubin, Vladimir. V.</au><au>Razjivin, Andrei. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The role of vibronic modes in formation of red antenna states of cyanobacterial PSI</atitle><jtitle>Photosynthesis research</jtitle><stitle>Photosynth Res</stitle><addtitle>Photosynth Res</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>146</volume><issue>1-3</issue><spage>75</spage><epage>86</epage><pages>75-86</pages><issn>0166-8595</issn><eissn>1573-5079</eissn><abstract>Cyanobacterial photosystem I (PSI) constitutes monomeric and trimeric pigment–protein complexes whose optical properties are marked by the presence of long-wavelength absorption bands. In spite of numerous experimental studies, the nature of these bands is still under debate and requires intensive theoretical analysis. Collecting together the data of linear spectroscopy and single-molecule spectroscopy (SMS) of PSI from Arthrospira platensis , we performed quantum modeling of the optical response based on molecular exciton theory (ET) and the multimode Brownian oscillator model (MBOM). Applying MBOM, the spectra of the red antenna state were calculated considering a particular for each red state adjustment of the low-frequency vibronic modes. Within the framework of our PSI exciton model it was shown that the coupling energy between antenna chlorophylls cannot be a factor of the red states formation, thus the long-wavelength bands are calculated without attribution to so-called antenna red chlorophylls. By the fitting of Huang–Rhys factors and frequencies for the lowest vibronic modes, we were able to reproduce the effects of strong and weak electron–phonon coupling experimentally observed in SMS spectra of red antenna states. Based on our theoretical calculations and also analysis of existing crystal structures of cyanobacterial PSI, we assumed that long-wavelength Chls can be localized in the peripheral protein subunits containing one or two pigment molecules.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>32766996</pmid><doi>10.1007/s11120-020-00779-y</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5955-6092</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0166-8595
ispartof Photosynthesis research, 2020-12, Vol.146 (1-3), p.75-86
issn 0166-8595
1573-5079
language eng
recordid cdi_proquest_miscellaneous_2431825261
source SpringerLink Journals
subjects Analysis
Antennas
Antennas (Electronics)
Biochemistry
Biomedical and Life Sciences
Crystals
Life Sciences
Optical properties
Original Article
Photosystem I
Plant Genetics and Genomics
Plant Physiology
Plant Sciences
Spectroscopy
Spectrum analysis
Structure
Wavelength
title The role of vibronic modes in formation of red antenna states of cyanobacterial PSI
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T06%3A46%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20role%20of%20vibronic%20modes%20in%20formation%20of%20red%20antenna%20states%20of%20cyanobacterial%20PSI&rft.jtitle=Photosynthesis%20research&rft.au=Pishchalnikov,%20Roman%20Y.&rft.date=2020-12-01&rft.volume=146&rft.issue=1-3&rft.spage=75&rft.epage=86&rft.pages=75-86&rft.issn=0166-8595&rft.eissn=1573-5079&rft_id=info:doi/10.1007/s11120-020-00779-y&rft_dat=%3Cgale_proqu%3EA639207180%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471580791&rft_id=info:pmid/32766996&rft_galeid=A639207180&rfr_iscdi=true