Electrolyte‐Dependent Sodium Ion Transport Behaviors in Hard Carbon Anode

A comprehensive study is conducted on hard carbon (HC) series samples by tuning the graphitic local microstructures systematically as an anode for SIBs in both carbonate‐ (CBE) and glyme‐based electrolytes (GBE). The results reveal more detailed charge storage characters of HCs on the LVP section. 1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2020-09, Vol.16 (35), p.e2001053-n/a
Hauptverfasser: Lee, Min Eui, Lee, Sang Moon, Choi, Jaewon, Jang, Dawon, Lee, Sungho, Jin, Hyoung‐Joon, Yun, Young Soo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 35
container_start_page e2001053
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 16
creator Lee, Min Eui
Lee, Sang Moon
Choi, Jaewon
Jang, Dawon
Lee, Sungho
Jin, Hyoung‐Joon
Yun, Young Soo
description A comprehensive study is conducted on hard carbon (HC) series samples by tuning the graphitic local microstructures systematically as an anode for SIBs in both carbonate‐ (CBE) and glyme‐based electrolytes (GBE). The results reveal more detailed charge storage characters of HCs on the LVP section. 1) The LVP capacity is closely related to the prismatic surface area to the basal plane as well as the bulk density, regardless of electrolyte systems. 2) The glyme‐sodium ion complex can facilitate sodium ion delivery into the internal closed pores of the HCs along with not well‐ordered graphitic structures. 3) The glyme‐mediated sodium ion‐storage behavior causes significant decreases in both surface film resistance and charge transfer resistance, leading to enhanced rate capability. 4) The LVP originates from the formation of pseudo‐metallic sodium nanoclusters, which are the same in a CBE and GBE. These results provide insight into the sodium ion‐storage behaviors of HCs, particularly on the interrelationship between graphitic local microstructures and electrolyte systems. In addition, a high‐performance HC anode with a plateau capacity of ≈300 mA h g−1 is designed based on the information, and its workability is demonstrated in a full‐cell SIB device. A comparison study is conducted on hard carbon series samples by systematically tuning local graphitic microstructures as an anode for sodium ion batteries in both carbonate‐ and glyme‐based electrolytes. These results provide insight into the sodium ion‐storage behaviors of hard carbons, particularly on the interrelationship between graphitic local microstructures and electrolyte systems.
doi_str_mv 10.1002/smll.202001053
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2431817825</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2439594201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4783-9a49e6a71893e2e13136f58d552721dea853277a909e217a75a49116e9e65f7a3</originalsourceid><addsrcrecordid>eNqF0EFPwjAYBuDGaATRq0ezxIuXYb92XdcjIgoR4wE8L4V9xJFtxXbTcPMn-Bv9JZaAmHjx1B6e982Xl5BzoF2glF27sii6jDJKgQp-QNoQAw_jhKnD_R9oi5w4t6SUA4vkMWlxJmNIKGuTh0GB89qaYl3j18fnLa6wyrCqg4nJ8qYMRqYKplZXbmVsHdzgi37LjXVBXgVDbbOgr-3Mk15lMjwlRwtdODzbvR3yfDeY9ofh-Ol-1O-Nw3kkEx4qHSmMtYREcWQIHHi8EEkmBJMMMtSJ8PdJrahCBlJL4QMAMfqUWEjNO-Rq27uy5rVBV6dl7uZYFLpC07iURRwSkAkTnl7-oUvT2Mpft1FKqIhR8Kq7VXNrnLO4SFc2L7Vdp0DTzczpZuZ0P7MPXOxqm1mJ2Z7_7OqB2oL3vMD1P3Xp5HE8_i3_BlGWh-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2439594201</pqid></control><display><type>article</type><title>Electrolyte‐Dependent Sodium Ion Transport Behaviors in Hard Carbon Anode</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lee, Min Eui ; Lee, Sang Moon ; Choi, Jaewon ; Jang, Dawon ; Lee, Sungho ; Jin, Hyoung‐Joon ; Yun, Young Soo</creator><creatorcontrib>Lee, Min Eui ; Lee, Sang Moon ; Choi, Jaewon ; Jang, Dawon ; Lee, Sungho ; Jin, Hyoung‐Joon ; Yun, Young Soo</creatorcontrib><description>A comprehensive study is conducted on hard carbon (HC) series samples by tuning the graphitic local microstructures systematically as an anode for SIBs in both carbonate‐ (CBE) and glyme‐based electrolytes (GBE). The results reveal more detailed charge storage characters of HCs on the LVP section. 1) The LVP capacity is closely related to the prismatic surface area to the basal plane as well as the bulk density, regardless of electrolyte systems. 2) The glyme‐sodium ion complex can facilitate sodium ion delivery into the internal closed pores of the HCs along with not well‐ordered graphitic structures. 3) The glyme‐mediated sodium ion‐storage behavior causes significant decreases in both surface film resistance and charge transfer resistance, leading to enhanced rate capability. 4) The LVP originates from the formation of pseudo‐metallic sodium nanoclusters, which are the same in a CBE and GBE. These results provide insight into the sodium ion‐storage behaviors of HCs, particularly on the interrelationship between graphitic local microstructures and electrolyte systems. In addition, a high‐performance HC anode with a plateau capacity of ≈300 mA h g−1 is designed based on the information, and its workability is demonstrated in a full‐cell SIB device. A comparison study is conducted on hard carbon series samples by systematically tuning local graphitic microstructures as an anode for sodium ion batteries in both carbonate‐ and glyme‐based electrolytes. These results provide insight into the sodium ion‐storage behaviors of hard carbons, particularly on the interrelationship between graphitic local microstructures and electrolyte systems.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202001053</identifier><identifier>PMID: 32761802</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Anodes ; Basal plane ; Bulk density ; Carbon ; charge storage mechanisms ; Charge transfer ; Electrolytes ; graphitic carbon ; hard carbon ; Ion transport ; Nanoclusters ; Nanotechnology ; Sodium ; sodium ions ; Workability</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2020-09, Vol.16 (35), p.e2001053-n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2020 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4783-9a49e6a71893e2e13136f58d552721dea853277a909e217a75a49116e9e65f7a3</citedby><cites>FETCH-LOGICAL-c4783-9a49e6a71893e2e13136f58d552721dea853277a909e217a75a49116e9e65f7a3</cites><orcidid>0000-0002-2937-9638</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202001053$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202001053$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32761802$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Min Eui</creatorcontrib><creatorcontrib>Lee, Sang Moon</creatorcontrib><creatorcontrib>Choi, Jaewon</creatorcontrib><creatorcontrib>Jang, Dawon</creatorcontrib><creatorcontrib>Lee, Sungho</creatorcontrib><creatorcontrib>Jin, Hyoung‐Joon</creatorcontrib><creatorcontrib>Yun, Young Soo</creatorcontrib><title>Electrolyte‐Dependent Sodium Ion Transport Behaviors in Hard Carbon Anode</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>A comprehensive study is conducted on hard carbon (HC) series samples by tuning the graphitic local microstructures systematically as an anode for SIBs in both carbonate‐ (CBE) and glyme‐based electrolytes (GBE). The results reveal more detailed charge storage characters of HCs on the LVP section. 1) The LVP capacity is closely related to the prismatic surface area to the basal plane as well as the bulk density, regardless of electrolyte systems. 2) The glyme‐sodium ion complex can facilitate sodium ion delivery into the internal closed pores of the HCs along with not well‐ordered graphitic structures. 3) The glyme‐mediated sodium ion‐storage behavior causes significant decreases in both surface film resistance and charge transfer resistance, leading to enhanced rate capability. 4) The LVP originates from the formation of pseudo‐metallic sodium nanoclusters, which are the same in a CBE and GBE. These results provide insight into the sodium ion‐storage behaviors of HCs, particularly on the interrelationship between graphitic local microstructures and electrolyte systems. In addition, a high‐performance HC anode with a plateau capacity of ≈300 mA h g−1 is designed based on the information, and its workability is demonstrated in a full‐cell SIB device. A comparison study is conducted on hard carbon series samples by systematically tuning local graphitic microstructures as an anode for sodium ion batteries in both carbonate‐ and glyme‐based electrolytes. These results provide insight into the sodium ion‐storage behaviors of hard carbons, particularly on the interrelationship between graphitic local microstructures and electrolyte systems.</description><subject>Anodes</subject><subject>Basal plane</subject><subject>Bulk density</subject><subject>Carbon</subject><subject>charge storage mechanisms</subject><subject>Charge transfer</subject><subject>Electrolytes</subject><subject>graphitic carbon</subject><subject>hard carbon</subject><subject>Ion transport</subject><subject>Nanoclusters</subject><subject>Nanotechnology</subject><subject>Sodium</subject><subject>sodium ions</subject><subject>Workability</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqF0EFPwjAYBuDGaATRq0ezxIuXYb92XdcjIgoR4wE8L4V9xJFtxXbTcPMn-Bv9JZaAmHjx1B6e982Xl5BzoF2glF27sii6jDJKgQp-QNoQAw_jhKnD_R9oi5w4t6SUA4vkMWlxJmNIKGuTh0GB89qaYl3j18fnLa6wyrCqg4nJ8qYMRqYKplZXbmVsHdzgi37LjXVBXgVDbbOgr-3Mk15lMjwlRwtdODzbvR3yfDeY9ofh-Ol-1O-Nw3kkEx4qHSmMtYREcWQIHHi8EEkmBJMMMtSJ8PdJrahCBlJL4QMAMfqUWEjNO-Rq27uy5rVBV6dl7uZYFLpC07iURRwSkAkTnl7-oUvT2Mpft1FKqIhR8Kq7VXNrnLO4SFc2L7Vdp0DTzczpZuZ0P7MPXOxqm1mJ2Z7_7OqB2oL3vMD1P3Xp5HE8_i3_BlGWh-w</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Lee, Min Eui</creator><creator>Lee, Sang Moon</creator><creator>Choi, Jaewon</creator><creator>Jang, Dawon</creator><creator>Lee, Sungho</creator><creator>Jin, Hyoung‐Joon</creator><creator>Yun, Young Soo</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2937-9638</orcidid></search><sort><creationdate>20200901</creationdate><title>Electrolyte‐Dependent Sodium Ion Transport Behaviors in Hard Carbon Anode</title><author>Lee, Min Eui ; Lee, Sang Moon ; Choi, Jaewon ; Jang, Dawon ; Lee, Sungho ; Jin, Hyoung‐Joon ; Yun, Young Soo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4783-9a49e6a71893e2e13136f58d552721dea853277a909e217a75a49116e9e65f7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anodes</topic><topic>Basal plane</topic><topic>Bulk density</topic><topic>Carbon</topic><topic>charge storage mechanisms</topic><topic>Charge transfer</topic><topic>Electrolytes</topic><topic>graphitic carbon</topic><topic>hard carbon</topic><topic>Ion transport</topic><topic>Nanoclusters</topic><topic>Nanotechnology</topic><topic>Sodium</topic><topic>sodium ions</topic><topic>Workability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Min Eui</creatorcontrib><creatorcontrib>Lee, Sang Moon</creatorcontrib><creatorcontrib>Choi, Jaewon</creatorcontrib><creatorcontrib>Jang, Dawon</creatorcontrib><creatorcontrib>Lee, Sungho</creatorcontrib><creatorcontrib>Jin, Hyoung‐Joon</creatorcontrib><creatorcontrib>Yun, Young Soo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Min Eui</au><au>Lee, Sang Moon</au><au>Choi, Jaewon</au><au>Jang, Dawon</au><au>Lee, Sungho</au><au>Jin, Hyoung‐Joon</au><au>Yun, Young Soo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrolyte‐Dependent Sodium Ion Transport Behaviors in Hard Carbon Anode</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2020-09-01</date><risdate>2020</risdate><volume>16</volume><issue>35</issue><spage>e2001053</spage><epage>n/a</epage><pages>e2001053-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>A comprehensive study is conducted on hard carbon (HC) series samples by tuning the graphitic local microstructures systematically as an anode for SIBs in both carbonate‐ (CBE) and glyme‐based electrolytes (GBE). The results reveal more detailed charge storage characters of HCs on the LVP section. 1) The LVP capacity is closely related to the prismatic surface area to the basal plane as well as the bulk density, regardless of electrolyte systems. 2) The glyme‐sodium ion complex can facilitate sodium ion delivery into the internal closed pores of the HCs along with not well‐ordered graphitic structures. 3) The glyme‐mediated sodium ion‐storage behavior causes significant decreases in both surface film resistance and charge transfer resistance, leading to enhanced rate capability. 4) The LVP originates from the formation of pseudo‐metallic sodium nanoclusters, which are the same in a CBE and GBE. These results provide insight into the sodium ion‐storage behaviors of HCs, particularly on the interrelationship between graphitic local microstructures and electrolyte systems. In addition, a high‐performance HC anode with a plateau capacity of ≈300 mA h g−1 is designed based on the information, and its workability is demonstrated in a full‐cell SIB device. A comparison study is conducted on hard carbon series samples by systematically tuning local graphitic microstructures as an anode for sodium ion batteries in both carbonate‐ and glyme‐based electrolytes. These results provide insight into the sodium ion‐storage behaviors of hard carbons, particularly on the interrelationship between graphitic local microstructures and electrolyte systems.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32761802</pmid><doi>10.1002/smll.202001053</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2937-9638</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2020-09, Vol.16 (35), p.e2001053-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2431817825
source Wiley Online Library Journals Frontfile Complete
subjects Anodes
Basal plane
Bulk density
Carbon
charge storage mechanisms
Charge transfer
Electrolytes
graphitic carbon
hard carbon
Ion transport
Nanoclusters
Nanotechnology
Sodium
sodium ions
Workability
title Electrolyte‐Dependent Sodium Ion Transport Behaviors in Hard Carbon Anode
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T09%3A58%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrolyte%E2%80%90Dependent%20Sodium%20Ion%20Transport%20Behaviors%20in%20Hard%20Carbon%20Anode&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Lee,%20Min%20Eui&rft.date=2020-09-01&rft.volume=16&rft.issue=35&rft.spage=e2001053&rft.epage=n/a&rft.pages=e2001053-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202001053&rft_dat=%3Cproquest_cross%3E2439594201%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2439594201&rft_id=info:pmid/32761802&rfr_iscdi=true