Electrolyte‐Dependent Sodium Ion Transport Behaviors in Hard Carbon Anode
A comprehensive study is conducted on hard carbon (HC) series samples by tuning the graphitic local microstructures systematically as an anode for SIBs in both carbonate‐ (CBE) and glyme‐based electrolytes (GBE). The results reveal more detailed charge storage characters of HCs on the LVP section. 1...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2020-09, Vol.16 (35), p.e2001053-n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 35 |
container_start_page | e2001053 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 16 |
creator | Lee, Min Eui Lee, Sang Moon Choi, Jaewon Jang, Dawon Lee, Sungho Jin, Hyoung‐Joon Yun, Young Soo |
description | A comprehensive study is conducted on hard carbon (HC) series samples by tuning the graphitic local microstructures systematically as an anode for SIBs in both carbonate‐ (CBE) and glyme‐based electrolytes (GBE). The results reveal more detailed charge storage characters of HCs on the LVP section. 1) The LVP capacity is closely related to the prismatic surface area to the basal plane as well as the bulk density, regardless of electrolyte systems. 2) The glyme‐sodium ion complex can facilitate sodium ion delivery into the internal closed pores of the HCs along with not well‐ordered graphitic structures. 3) The glyme‐mediated sodium ion‐storage behavior causes significant decreases in both surface film resistance and charge transfer resistance, leading to enhanced rate capability. 4) The LVP originates from the formation of pseudo‐metallic sodium nanoclusters, which are the same in a CBE and GBE. These results provide insight into the sodium ion‐storage behaviors of HCs, particularly on the interrelationship between graphitic local microstructures and electrolyte systems. In addition, a high‐performance HC anode with a plateau capacity of ≈300 mA h g−1 is designed based on the information, and its workability is demonstrated in a full‐cell SIB device.
A comparison study is conducted on hard carbon series samples by systematically tuning local graphitic microstructures as an anode for sodium ion batteries in both carbonate‐ and glyme‐based electrolytes. These results provide insight into the sodium ion‐storage behaviors of hard carbons, particularly on the interrelationship between graphitic local microstructures and electrolyte systems. |
doi_str_mv | 10.1002/smll.202001053 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2431817825</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2439594201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4783-9a49e6a71893e2e13136f58d552721dea853277a909e217a75a49116e9e65f7a3</originalsourceid><addsrcrecordid>eNqF0EFPwjAYBuDGaATRq0ezxIuXYb92XdcjIgoR4wE8L4V9xJFtxXbTcPMn-Bv9JZaAmHjx1B6e982Xl5BzoF2glF27sii6jDJKgQp-QNoQAw_jhKnD_R9oi5w4t6SUA4vkMWlxJmNIKGuTh0GB89qaYl3j18fnLa6wyrCqg4nJ8qYMRqYKplZXbmVsHdzgi37LjXVBXgVDbbOgr-3Mk15lMjwlRwtdODzbvR3yfDeY9ofh-Ol-1O-Nw3kkEx4qHSmMtYREcWQIHHi8EEkmBJMMMtSJ8PdJrahCBlJL4QMAMfqUWEjNO-Rq27uy5rVBV6dl7uZYFLpC07iURRwSkAkTnl7-oUvT2Mpft1FKqIhR8Kq7VXNrnLO4SFc2L7Vdp0DTzczpZuZ0P7MPXOxqm1mJ2Z7_7OqB2oL3vMD1P3Xp5HE8_i3_BlGWh-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2439594201</pqid></control><display><type>article</type><title>Electrolyte‐Dependent Sodium Ion Transport Behaviors in Hard Carbon Anode</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lee, Min Eui ; Lee, Sang Moon ; Choi, Jaewon ; Jang, Dawon ; Lee, Sungho ; Jin, Hyoung‐Joon ; Yun, Young Soo</creator><creatorcontrib>Lee, Min Eui ; Lee, Sang Moon ; Choi, Jaewon ; Jang, Dawon ; Lee, Sungho ; Jin, Hyoung‐Joon ; Yun, Young Soo</creatorcontrib><description>A comprehensive study is conducted on hard carbon (HC) series samples by tuning the graphitic local microstructures systematically as an anode for SIBs in both carbonate‐ (CBE) and glyme‐based electrolytes (GBE). The results reveal more detailed charge storage characters of HCs on the LVP section. 1) The LVP capacity is closely related to the prismatic surface area to the basal plane as well as the bulk density, regardless of electrolyte systems. 2) The glyme‐sodium ion complex can facilitate sodium ion delivery into the internal closed pores of the HCs along with not well‐ordered graphitic structures. 3) The glyme‐mediated sodium ion‐storage behavior causes significant decreases in both surface film resistance and charge transfer resistance, leading to enhanced rate capability. 4) The LVP originates from the formation of pseudo‐metallic sodium nanoclusters, which are the same in a CBE and GBE. These results provide insight into the sodium ion‐storage behaviors of HCs, particularly on the interrelationship between graphitic local microstructures and electrolyte systems. In addition, a high‐performance HC anode with a plateau capacity of ≈300 mA h g−1 is designed based on the information, and its workability is demonstrated in a full‐cell SIB device.
A comparison study is conducted on hard carbon series samples by systematically tuning local graphitic microstructures as an anode for sodium ion batteries in both carbonate‐ and glyme‐based electrolytes. These results provide insight into the sodium ion‐storage behaviors of hard carbons, particularly on the interrelationship between graphitic local microstructures and electrolyte systems.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202001053</identifier><identifier>PMID: 32761802</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Anodes ; Basal plane ; Bulk density ; Carbon ; charge storage mechanisms ; Charge transfer ; Electrolytes ; graphitic carbon ; hard carbon ; Ion transport ; Nanoclusters ; Nanotechnology ; Sodium ; sodium ions ; Workability</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2020-09, Vol.16 (35), p.e2001053-n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2020 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4783-9a49e6a71893e2e13136f58d552721dea853277a909e217a75a49116e9e65f7a3</citedby><cites>FETCH-LOGICAL-c4783-9a49e6a71893e2e13136f58d552721dea853277a909e217a75a49116e9e65f7a3</cites><orcidid>0000-0002-2937-9638</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202001053$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202001053$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32761802$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Min Eui</creatorcontrib><creatorcontrib>Lee, Sang Moon</creatorcontrib><creatorcontrib>Choi, Jaewon</creatorcontrib><creatorcontrib>Jang, Dawon</creatorcontrib><creatorcontrib>Lee, Sungho</creatorcontrib><creatorcontrib>Jin, Hyoung‐Joon</creatorcontrib><creatorcontrib>Yun, Young Soo</creatorcontrib><title>Electrolyte‐Dependent Sodium Ion Transport Behaviors in Hard Carbon Anode</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>A comprehensive study is conducted on hard carbon (HC) series samples by tuning the graphitic local microstructures systematically as an anode for SIBs in both carbonate‐ (CBE) and glyme‐based electrolytes (GBE). The results reveal more detailed charge storage characters of HCs on the LVP section. 1) The LVP capacity is closely related to the prismatic surface area to the basal plane as well as the bulk density, regardless of electrolyte systems. 2) The glyme‐sodium ion complex can facilitate sodium ion delivery into the internal closed pores of the HCs along with not well‐ordered graphitic structures. 3) The glyme‐mediated sodium ion‐storage behavior causes significant decreases in both surface film resistance and charge transfer resistance, leading to enhanced rate capability. 4) The LVP originates from the formation of pseudo‐metallic sodium nanoclusters, which are the same in a CBE and GBE. These results provide insight into the sodium ion‐storage behaviors of HCs, particularly on the interrelationship between graphitic local microstructures and electrolyte systems. In addition, a high‐performance HC anode with a plateau capacity of ≈300 mA h g−1 is designed based on the information, and its workability is demonstrated in a full‐cell SIB device.
A comparison study is conducted on hard carbon series samples by systematically tuning local graphitic microstructures as an anode for sodium ion batteries in both carbonate‐ and glyme‐based electrolytes. These results provide insight into the sodium ion‐storage behaviors of hard carbons, particularly on the interrelationship between graphitic local microstructures and electrolyte systems.</description><subject>Anodes</subject><subject>Basal plane</subject><subject>Bulk density</subject><subject>Carbon</subject><subject>charge storage mechanisms</subject><subject>Charge transfer</subject><subject>Electrolytes</subject><subject>graphitic carbon</subject><subject>hard carbon</subject><subject>Ion transport</subject><subject>Nanoclusters</subject><subject>Nanotechnology</subject><subject>Sodium</subject><subject>sodium ions</subject><subject>Workability</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqF0EFPwjAYBuDGaATRq0ezxIuXYb92XdcjIgoR4wE8L4V9xJFtxXbTcPMn-Bv9JZaAmHjx1B6e982Xl5BzoF2glF27sii6jDJKgQp-QNoQAw_jhKnD_R9oi5w4t6SUA4vkMWlxJmNIKGuTh0GB89qaYl3j18fnLa6wyrCqg4nJ8qYMRqYKplZXbmVsHdzgi37LjXVBXgVDbbOgr-3Mk15lMjwlRwtdODzbvR3yfDeY9ofh-Ol-1O-Nw3kkEx4qHSmMtYREcWQIHHi8EEkmBJMMMtSJ8PdJrahCBlJL4QMAMfqUWEjNO-Rq27uy5rVBV6dl7uZYFLpC07iURRwSkAkTnl7-oUvT2Mpft1FKqIhR8Kq7VXNrnLO4SFc2L7Vdp0DTzczpZuZ0P7MPXOxqm1mJ2Z7_7OqB2oL3vMD1P3Xp5HE8_i3_BlGWh-w</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Lee, Min Eui</creator><creator>Lee, Sang Moon</creator><creator>Choi, Jaewon</creator><creator>Jang, Dawon</creator><creator>Lee, Sungho</creator><creator>Jin, Hyoung‐Joon</creator><creator>Yun, Young Soo</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2937-9638</orcidid></search><sort><creationdate>20200901</creationdate><title>Electrolyte‐Dependent Sodium Ion Transport Behaviors in Hard Carbon Anode</title><author>Lee, Min Eui ; Lee, Sang Moon ; Choi, Jaewon ; Jang, Dawon ; Lee, Sungho ; Jin, Hyoung‐Joon ; Yun, Young Soo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4783-9a49e6a71893e2e13136f58d552721dea853277a909e217a75a49116e9e65f7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anodes</topic><topic>Basal plane</topic><topic>Bulk density</topic><topic>Carbon</topic><topic>charge storage mechanisms</topic><topic>Charge transfer</topic><topic>Electrolytes</topic><topic>graphitic carbon</topic><topic>hard carbon</topic><topic>Ion transport</topic><topic>Nanoclusters</topic><topic>Nanotechnology</topic><topic>Sodium</topic><topic>sodium ions</topic><topic>Workability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Min Eui</creatorcontrib><creatorcontrib>Lee, Sang Moon</creatorcontrib><creatorcontrib>Choi, Jaewon</creatorcontrib><creatorcontrib>Jang, Dawon</creatorcontrib><creatorcontrib>Lee, Sungho</creatorcontrib><creatorcontrib>Jin, Hyoung‐Joon</creatorcontrib><creatorcontrib>Yun, Young Soo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Min Eui</au><au>Lee, Sang Moon</au><au>Choi, Jaewon</au><au>Jang, Dawon</au><au>Lee, Sungho</au><au>Jin, Hyoung‐Joon</au><au>Yun, Young Soo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrolyte‐Dependent Sodium Ion Transport Behaviors in Hard Carbon Anode</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2020-09-01</date><risdate>2020</risdate><volume>16</volume><issue>35</issue><spage>e2001053</spage><epage>n/a</epage><pages>e2001053-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>A comprehensive study is conducted on hard carbon (HC) series samples by tuning the graphitic local microstructures systematically as an anode for SIBs in both carbonate‐ (CBE) and glyme‐based electrolytes (GBE). The results reveal more detailed charge storage characters of HCs on the LVP section. 1) The LVP capacity is closely related to the prismatic surface area to the basal plane as well as the bulk density, regardless of electrolyte systems. 2) The glyme‐sodium ion complex can facilitate sodium ion delivery into the internal closed pores of the HCs along with not well‐ordered graphitic structures. 3) The glyme‐mediated sodium ion‐storage behavior causes significant decreases in both surface film resistance and charge transfer resistance, leading to enhanced rate capability. 4) The LVP originates from the formation of pseudo‐metallic sodium nanoclusters, which are the same in a CBE and GBE. These results provide insight into the sodium ion‐storage behaviors of HCs, particularly on the interrelationship between graphitic local microstructures and electrolyte systems. In addition, a high‐performance HC anode with a plateau capacity of ≈300 mA h g−1 is designed based on the information, and its workability is demonstrated in a full‐cell SIB device.
A comparison study is conducted on hard carbon series samples by systematically tuning local graphitic microstructures as an anode for sodium ion batteries in both carbonate‐ and glyme‐based electrolytes. These results provide insight into the sodium ion‐storage behaviors of hard carbons, particularly on the interrelationship between graphitic local microstructures and electrolyte systems.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32761802</pmid><doi>10.1002/smll.202001053</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2937-9638</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2020-09, Vol.16 (35), p.e2001053-n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_2431817825 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Anodes Basal plane Bulk density Carbon charge storage mechanisms Charge transfer Electrolytes graphitic carbon hard carbon Ion transport Nanoclusters Nanotechnology Sodium sodium ions Workability |
title | Electrolyte‐Dependent Sodium Ion Transport Behaviors in Hard Carbon Anode |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T09%3A58%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrolyte%E2%80%90Dependent%20Sodium%20Ion%20Transport%20Behaviors%20in%20Hard%20Carbon%20Anode&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Lee,%20Min%20Eui&rft.date=2020-09-01&rft.volume=16&rft.issue=35&rft.spage=e2001053&rft.epage=n/a&rft.pages=e2001053-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202001053&rft_dat=%3Cproquest_cross%3E2439594201%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2439594201&rft_id=info:pmid/32761802&rfr_iscdi=true |