A surface modifier enhances the performance of the all-inorganic CsPbI2Br perovskite solar cells with efficiencies approaching 15
All-inorganic perovskite solar cells (PSCs) are attracting considerable attention due to their promising thermal stability, but their inferior power-conversion efficiencies (PCE) hinder their realistic application. Here, we propose an approach through surface modification based on methyl ammonium ha...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2020-08, Vol.22 (32), p.17847-17856 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17856 |
---|---|
container_issue | 32 |
container_start_page | 17847 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 22 |
creator | Wang, Kaiyuan Zhou, Jiyu Li, Xing Ahmad, Nafees Xia, Haoran Wu, Guangbao Zhang, Xuning Wang, Boxing Zhang, Dongyang Zou, Yu Zhou, Huiqiong Zhang, Yuan |
description | All-inorganic perovskite solar cells (PSCs) are attracting considerable attention due to their promising thermal stability, but their inferior power-conversion efficiencies (PCE) hinder their realistic application. Here, we propose an approach through surface modification based on methyl ammonium halide (MAX) for inorganic CsPbI2Br solar cells processed at a low temperature. The combined benefits of the introduced MAX modifier enable the boosting of the power conversion efficiency to 14.8% with an impressive FF of 82.2% in CsPbI2Br PSCs. Our experimental analyses coupled with optical modeling indicate that the incorporated MAX leads to an effective passivation of the surface traps originating from Pb2+ and I− ions in CsPbI2Br and simultaneously mediates the crystallization of CsPbI2Br with slightly enlarged grains and reduced numbers of structural defects and pinhole. As a result, the interfacial trap-assisted recombination is suppressed and the charge extraction is promoted. Mechanistically, we show that in the presence of MAX, the deep-level traps in the perovskites are passivated, leaving the energy of the trapping centers to become shallower. In this situation, the negative impacts of the traps on carrier transport and recombination are mitigated. |
doi_str_mv | 10.1039/d0cp01437k |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2431817725</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2431817725</sourcerecordid><originalsourceid>FETCH-LOGICAL-g253t-b98c98fff2605c8a0a42d0427f0dc7fd6305d06575f271c5d0a38d06c959879e3</originalsourceid><addsrcrecordid>eNpdjjFPwzAUhC0EEqWw8AsssbAEnu04dsZSUahUCQaYK9exG7epHewEZv45CSAGhqc7nT69O4QuCdwQYOVtBboFkjOxP0ITkhcsK0Hmx39eFKfoLKUdABBO2AR9znDqo1Xa4EOonHUmYuNr5bVJuKsNbk20IR7GAAf7HammyZwPcau803ienjdLehdHMrynvesMTqFREWvTNAl_uK7GxlqnnfHDJazaNgala-e3mPBzdGJVk8zFr07R6-L-Zf6YrZ4elvPZKttSzrpsU0pdSmstLYBrqUDltIKcCguVFrYqGPAKCi64pYLowSsmh0CXvJSiNGyKrn_-DuVvvUnd-uDSOFF5E_q0pjkjkggxtE3R1T90F_roh3UjVeTAJTD2BRRob6I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2436405803</pqid></control><display><type>article</type><title>A surface modifier enhances the performance of the all-inorganic CsPbI2Br perovskite solar cells with efficiencies approaching 15</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Wang, Kaiyuan ; Zhou, Jiyu ; Li, Xing ; Ahmad, Nafees ; Xia, Haoran ; Wu, Guangbao ; Zhang, Xuning ; Wang, Boxing ; Zhang, Dongyang ; Zou, Yu ; Zhou, Huiqiong ; Zhang, Yuan</creator><creatorcontrib>Wang, Kaiyuan ; Zhou, Jiyu ; Li, Xing ; Ahmad, Nafees ; Xia, Haoran ; Wu, Guangbao ; Zhang, Xuning ; Wang, Boxing ; Zhang, Dongyang ; Zou, Yu ; Zhou, Huiqiong ; Zhang, Yuan</creatorcontrib><description>All-inorganic perovskite solar cells (PSCs) are attracting considerable attention due to their promising thermal stability, but their inferior power-conversion efficiencies (PCE) hinder their realistic application. Here, we propose an approach through surface modification based on methyl ammonium halide (MAX) for inorganic CsPbI2Br solar cells processed at a low temperature. The combined benefits of the introduced MAX modifier enable the boosting of the power conversion efficiency to 14.8% with an impressive FF of 82.2% in CsPbI2Br PSCs. Our experimental analyses coupled with optical modeling indicate that the incorporated MAX leads to an effective passivation of the surface traps originating from Pb2+ and I− ions in CsPbI2Br and simultaneously mediates the crystallization of CsPbI2Br with slightly enlarged grains and reduced numbers of structural defects and pinhole. As a result, the interfacial trap-assisted recombination is suppressed and the charge extraction is promoted. Mechanistically, we show that in the presence of MAX, the deep-level traps in the perovskites are passivated, leaving the energy of the trapping centers to become shallower. In this situation, the negative impacts of the traps on carrier transport and recombination are mitigated.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d0cp01437k</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Carrier recombination ; Carrier transport ; Crystal defects ; Crystallization ; Energy conversion efficiency ; Low temperature ; Performance enhancement ; Perovskites ; Photovoltaic cells ; Pinholes ; Solar cells ; Thermal stability</subject><ispartof>Physical chemistry chemical physics : PCCP, 2020-08, Vol.22 (32), p.17847-17856</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Wang, Kaiyuan</creatorcontrib><creatorcontrib>Zhou, Jiyu</creatorcontrib><creatorcontrib>Li, Xing</creatorcontrib><creatorcontrib>Ahmad, Nafees</creatorcontrib><creatorcontrib>Xia, Haoran</creatorcontrib><creatorcontrib>Wu, Guangbao</creatorcontrib><creatorcontrib>Zhang, Xuning</creatorcontrib><creatorcontrib>Wang, Boxing</creatorcontrib><creatorcontrib>Zhang, Dongyang</creatorcontrib><creatorcontrib>Zou, Yu</creatorcontrib><creatorcontrib>Zhou, Huiqiong</creatorcontrib><creatorcontrib>Zhang, Yuan</creatorcontrib><title>A surface modifier enhances the performance of the all-inorganic CsPbI2Br perovskite solar cells with efficiencies approaching 15</title><title>Physical chemistry chemical physics : PCCP</title><description>All-inorganic perovskite solar cells (PSCs) are attracting considerable attention due to their promising thermal stability, but their inferior power-conversion efficiencies (PCE) hinder their realistic application. Here, we propose an approach through surface modification based on methyl ammonium halide (MAX) for inorganic CsPbI2Br solar cells processed at a low temperature. The combined benefits of the introduced MAX modifier enable the boosting of the power conversion efficiency to 14.8% with an impressive FF of 82.2% in CsPbI2Br PSCs. Our experimental analyses coupled with optical modeling indicate that the incorporated MAX leads to an effective passivation of the surface traps originating from Pb2+ and I− ions in CsPbI2Br and simultaneously mediates the crystallization of CsPbI2Br with slightly enlarged grains and reduced numbers of structural defects and pinhole. As a result, the interfacial trap-assisted recombination is suppressed and the charge extraction is promoted. Mechanistically, we show that in the presence of MAX, the deep-level traps in the perovskites are passivated, leaving the energy of the trapping centers to become shallower. In this situation, the negative impacts of the traps on carrier transport and recombination are mitigated.</description><subject>Carrier recombination</subject><subject>Carrier transport</subject><subject>Crystal defects</subject><subject>Crystallization</subject><subject>Energy conversion efficiency</subject><subject>Low temperature</subject><subject>Performance enhancement</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Pinholes</subject><subject>Solar cells</subject><subject>Thermal stability</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdjjFPwzAUhC0EEqWw8AsssbAEnu04dsZSUahUCQaYK9exG7epHewEZv45CSAGhqc7nT69O4QuCdwQYOVtBboFkjOxP0ITkhcsK0Hmx39eFKfoLKUdABBO2AR9znDqo1Xa4EOonHUmYuNr5bVJuKsNbk20IR7GAAf7HammyZwPcau803ienjdLehdHMrynvesMTqFREWvTNAl_uK7GxlqnnfHDJazaNgala-e3mPBzdGJVk8zFr07R6-L-Zf6YrZ4elvPZKttSzrpsU0pdSmstLYBrqUDltIKcCguVFrYqGPAKCi64pYLowSsmh0CXvJSiNGyKrn_-DuVvvUnd-uDSOFF5E_q0pjkjkggxtE3R1T90F_roh3UjVeTAJTD2BRRob6I</recordid><startdate>20200828</startdate><enddate>20200828</enddate><creator>Wang, Kaiyuan</creator><creator>Zhou, Jiyu</creator><creator>Li, Xing</creator><creator>Ahmad, Nafees</creator><creator>Xia, Haoran</creator><creator>Wu, Guangbao</creator><creator>Zhang, Xuning</creator><creator>Wang, Boxing</creator><creator>Zhang, Dongyang</creator><creator>Zou, Yu</creator><creator>Zhou, Huiqiong</creator><creator>Zhang, Yuan</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20200828</creationdate><title>A surface modifier enhances the performance of the all-inorganic CsPbI2Br perovskite solar cells with efficiencies approaching 15</title><author>Wang, Kaiyuan ; Zhou, Jiyu ; Li, Xing ; Ahmad, Nafees ; Xia, Haoran ; Wu, Guangbao ; Zhang, Xuning ; Wang, Boxing ; Zhang, Dongyang ; Zou, Yu ; Zhou, Huiqiong ; Zhang, Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g253t-b98c98fff2605c8a0a42d0427f0dc7fd6305d06575f271c5d0a38d06c959879e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Carrier recombination</topic><topic>Carrier transport</topic><topic>Crystal defects</topic><topic>Crystallization</topic><topic>Energy conversion efficiency</topic><topic>Low temperature</topic><topic>Performance enhancement</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Pinholes</topic><topic>Solar cells</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Kaiyuan</creatorcontrib><creatorcontrib>Zhou, Jiyu</creatorcontrib><creatorcontrib>Li, Xing</creatorcontrib><creatorcontrib>Ahmad, Nafees</creatorcontrib><creatorcontrib>Xia, Haoran</creatorcontrib><creatorcontrib>Wu, Guangbao</creatorcontrib><creatorcontrib>Zhang, Xuning</creatorcontrib><creatorcontrib>Wang, Boxing</creatorcontrib><creatorcontrib>Zhang, Dongyang</creatorcontrib><creatorcontrib>Zou, Yu</creatorcontrib><creatorcontrib>Zhou, Huiqiong</creatorcontrib><creatorcontrib>Zhang, Yuan</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Kaiyuan</au><au>Zhou, Jiyu</au><au>Li, Xing</au><au>Ahmad, Nafees</au><au>Xia, Haoran</au><au>Wu, Guangbao</au><au>Zhang, Xuning</au><au>Wang, Boxing</au><au>Zhang, Dongyang</au><au>Zou, Yu</au><au>Zhou, Huiqiong</au><au>Zhang, Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A surface modifier enhances the performance of the all-inorganic CsPbI2Br perovskite solar cells with efficiencies approaching 15</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2020-08-28</date><risdate>2020</risdate><volume>22</volume><issue>32</issue><spage>17847</spage><epage>17856</epage><pages>17847-17856</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>All-inorganic perovskite solar cells (PSCs) are attracting considerable attention due to their promising thermal stability, but their inferior power-conversion efficiencies (PCE) hinder their realistic application. Here, we propose an approach through surface modification based on methyl ammonium halide (MAX) for inorganic CsPbI2Br solar cells processed at a low temperature. The combined benefits of the introduced MAX modifier enable the boosting of the power conversion efficiency to 14.8% with an impressive FF of 82.2% in CsPbI2Br PSCs. Our experimental analyses coupled with optical modeling indicate that the incorporated MAX leads to an effective passivation of the surface traps originating from Pb2+ and I− ions in CsPbI2Br and simultaneously mediates the crystallization of CsPbI2Br with slightly enlarged grains and reduced numbers of structural defects and pinhole. As a result, the interfacial trap-assisted recombination is suppressed and the charge extraction is promoted. Mechanistically, we show that in the presence of MAX, the deep-level traps in the perovskites are passivated, leaving the energy of the trapping centers to become shallower. In this situation, the negative impacts of the traps on carrier transport and recombination are mitigated.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0cp01437k</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2020-08, Vol.22 (32), p.17847-17856 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_proquest_miscellaneous_2431817725 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Carrier recombination Carrier transport Crystal defects Crystallization Energy conversion efficiency Low temperature Performance enhancement Perovskites Photovoltaic cells Pinholes Solar cells Thermal stability |
title | A surface modifier enhances the performance of the all-inorganic CsPbI2Br perovskite solar cells with efficiencies approaching 15 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T00%3A19%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20surface%20modifier%20enhances%20the%20performance%20of%20the%20all-inorganic%20CsPbI2Br%20perovskite%20solar%20cells%20with%20efficiencies%20approaching%2015&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Wang,%20Kaiyuan&rft.date=2020-08-28&rft.volume=22&rft.issue=32&rft.spage=17847&rft.epage=17856&rft.pages=17847-17856&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d0cp01437k&rft_dat=%3Cproquest%3E2431817725%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2436405803&rft_id=info:pmid/&rfr_iscdi=true |