A surface modifier enhances the performance of the all-inorganic CsPbI2Br perovskite solar cells with efficiencies approaching 15

All-inorganic perovskite solar cells (PSCs) are attracting considerable attention due to their promising thermal stability, but their inferior power-conversion efficiencies (PCE) hinder their realistic application. Here, we propose an approach through surface modification based on methyl ammonium ha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2020-08, Vol.22 (32), p.17847-17856
Hauptverfasser: Wang, Kaiyuan, Zhou, Jiyu, Li, Xing, Ahmad, Nafees, Xia, Haoran, Wu, Guangbao, Zhang, Xuning, Wang, Boxing, Zhang, Dongyang, Zou, Yu, Zhou, Huiqiong, Zhang, Yuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17856
container_issue 32
container_start_page 17847
container_title Physical chemistry chemical physics : PCCP
container_volume 22
creator Wang, Kaiyuan
Zhou, Jiyu
Li, Xing
Ahmad, Nafees
Xia, Haoran
Wu, Guangbao
Zhang, Xuning
Wang, Boxing
Zhang, Dongyang
Zou, Yu
Zhou, Huiqiong
Zhang, Yuan
description All-inorganic perovskite solar cells (PSCs) are attracting considerable attention due to their promising thermal stability, but their inferior power-conversion efficiencies (PCE) hinder their realistic application. Here, we propose an approach through surface modification based on methyl ammonium halide (MAX) for inorganic CsPbI2Br solar cells processed at a low temperature. The combined benefits of the introduced MAX modifier enable the boosting of the power conversion efficiency to 14.8% with an impressive FF of 82.2% in CsPbI2Br PSCs. Our experimental analyses coupled with optical modeling indicate that the incorporated MAX leads to an effective passivation of the surface traps originating from Pb2+ and I− ions in CsPbI2Br and simultaneously mediates the crystallization of CsPbI2Br with slightly enlarged grains and reduced numbers of structural defects and pinhole. As a result, the interfacial trap-assisted recombination is suppressed and the charge extraction is promoted. Mechanistically, we show that in the presence of MAX, the deep-level traps in the perovskites are passivated, leaving the energy of the trapping centers to become shallower. In this situation, the negative impacts of the traps on carrier transport and recombination are mitigated.
doi_str_mv 10.1039/d0cp01437k
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2431817725</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2431817725</sourcerecordid><originalsourceid>FETCH-LOGICAL-g253t-b98c98fff2605c8a0a42d0427f0dc7fd6305d06575f271c5d0a38d06c959879e3</originalsourceid><addsrcrecordid>eNpdjjFPwzAUhC0EEqWw8AsssbAEnu04dsZSUahUCQaYK9exG7epHewEZv45CSAGhqc7nT69O4QuCdwQYOVtBboFkjOxP0ITkhcsK0Hmx39eFKfoLKUdABBO2AR9znDqo1Xa4EOonHUmYuNr5bVJuKsNbk20IR7GAAf7HammyZwPcau803ienjdLehdHMrynvesMTqFREWvTNAl_uK7GxlqnnfHDJazaNgala-e3mPBzdGJVk8zFr07R6-L-Zf6YrZ4elvPZKttSzrpsU0pdSmstLYBrqUDltIKcCguVFrYqGPAKCi64pYLowSsmh0CXvJSiNGyKrn_-DuVvvUnd-uDSOFF5E_q0pjkjkggxtE3R1T90F_roh3UjVeTAJTD2BRRob6I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2436405803</pqid></control><display><type>article</type><title>A surface modifier enhances the performance of the all-inorganic CsPbI2Br perovskite solar cells with efficiencies approaching 15</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Wang, Kaiyuan ; Zhou, Jiyu ; Li, Xing ; Ahmad, Nafees ; Xia, Haoran ; Wu, Guangbao ; Zhang, Xuning ; Wang, Boxing ; Zhang, Dongyang ; Zou, Yu ; Zhou, Huiqiong ; Zhang, Yuan</creator><creatorcontrib>Wang, Kaiyuan ; Zhou, Jiyu ; Li, Xing ; Ahmad, Nafees ; Xia, Haoran ; Wu, Guangbao ; Zhang, Xuning ; Wang, Boxing ; Zhang, Dongyang ; Zou, Yu ; Zhou, Huiqiong ; Zhang, Yuan</creatorcontrib><description>All-inorganic perovskite solar cells (PSCs) are attracting considerable attention due to their promising thermal stability, but their inferior power-conversion efficiencies (PCE) hinder their realistic application. Here, we propose an approach through surface modification based on methyl ammonium halide (MAX) for inorganic CsPbI2Br solar cells processed at a low temperature. The combined benefits of the introduced MAX modifier enable the boosting of the power conversion efficiency to 14.8% with an impressive FF of 82.2% in CsPbI2Br PSCs. Our experimental analyses coupled with optical modeling indicate that the incorporated MAX leads to an effective passivation of the surface traps originating from Pb2+ and I− ions in CsPbI2Br and simultaneously mediates the crystallization of CsPbI2Br with slightly enlarged grains and reduced numbers of structural defects and pinhole. As a result, the interfacial trap-assisted recombination is suppressed and the charge extraction is promoted. Mechanistically, we show that in the presence of MAX, the deep-level traps in the perovskites are passivated, leaving the energy of the trapping centers to become shallower. In this situation, the negative impacts of the traps on carrier transport and recombination are mitigated.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d0cp01437k</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Carrier recombination ; Carrier transport ; Crystal defects ; Crystallization ; Energy conversion efficiency ; Low temperature ; Performance enhancement ; Perovskites ; Photovoltaic cells ; Pinholes ; Solar cells ; Thermal stability</subject><ispartof>Physical chemistry chemical physics : PCCP, 2020-08, Vol.22 (32), p.17847-17856</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Wang, Kaiyuan</creatorcontrib><creatorcontrib>Zhou, Jiyu</creatorcontrib><creatorcontrib>Li, Xing</creatorcontrib><creatorcontrib>Ahmad, Nafees</creatorcontrib><creatorcontrib>Xia, Haoran</creatorcontrib><creatorcontrib>Wu, Guangbao</creatorcontrib><creatorcontrib>Zhang, Xuning</creatorcontrib><creatorcontrib>Wang, Boxing</creatorcontrib><creatorcontrib>Zhang, Dongyang</creatorcontrib><creatorcontrib>Zou, Yu</creatorcontrib><creatorcontrib>Zhou, Huiqiong</creatorcontrib><creatorcontrib>Zhang, Yuan</creatorcontrib><title>A surface modifier enhances the performance of the all-inorganic CsPbI2Br perovskite solar cells with efficiencies approaching 15</title><title>Physical chemistry chemical physics : PCCP</title><description>All-inorganic perovskite solar cells (PSCs) are attracting considerable attention due to their promising thermal stability, but their inferior power-conversion efficiencies (PCE) hinder their realistic application. Here, we propose an approach through surface modification based on methyl ammonium halide (MAX) for inorganic CsPbI2Br solar cells processed at a low temperature. The combined benefits of the introduced MAX modifier enable the boosting of the power conversion efficiency to 14.8% with an impressive FF of 82.2% in CsPbI2Br PSCs. Our experimental analyses coupled with optical modeling indicate that the incorporated MAX leads to an effective passivation of the surface traps originating from Pb2+ and I− ions in CsPbI2Br and simultaneously mediates the crystallization of CsPbI2Br with slightly enlarged grains and reduced numbers of structural defects and pinhole. As a result, the interfacial trap-assisted recombination is suppressed and the charge extraction is promoted. Mechanistically, we show that in the presence of MAX, the deep-level traps in the perovskites are passivated, leaving the energy of the trapping centers to become shallower. In this situation, the negative impacts of the traps on carrier transport and recombination are mitigated.</description><subject>Carrier recombination</subject><subject>Carrier transport</subject><subject>Crystal defects</subject><subject>Crystallization</subject><subject>Energy conversion efficiency</subject><subject>Low temperature</subject><subject>Performance enhancement</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Pinholes</subject><subject>Solar cells</subject><subject>Thermal stability</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdjjFPwzAUhC0EEqWw8AsssbAEnu04dsZSUahUCQaYK9exG7epHewEZv45CSAGhqc7nT69O4QuCdwQYOVtBboFkjOxP0ITkhcsK0Hmx39eFKfoLKUdABBO2AR9znDqo1Xa4EOonHUmYuNr5bVJuKsNbk20IR7GAAf7HammyZwPcau803ienjdLehdHMrynvesMTqFREWvTNAl_uK7GxlqnnfHDJazaNgala-e3mPBzdGJVk8zFr07R6-L-Zf6YrZ4elvPZKttSzrpsU0pdSmstLYBrqUDltIKcCguVFrYqGPAKCi64pYLowSsmh0CXvJSiNGyKrn_-DuVvvUnd-uDSOFF5E_q0pjkjkggxtE3R1T90F_roh3UjVeTAJTD2BRRob6I</recordid><startdate>20200828</startdate><enddate>20200828</enddate><creator>Wang, Kaiyuan</creator><creator>Zhou, Jiyu</creator><creator>Li, Xing</creator><creator>Ahmad, Nafees</creator><creator>Xia, Haoran</creator><creator>Wu, Guangbao</creator><creator>Zhang, Xuning</creator><creator>Wang, Boxing</creator><creator>Zhang, Dongyang</creator><creator>Zou, Yu</creator><creator>Zhou, Huiqiong</creator><creator>Zhang, Yuan</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20200828</creationdate><title>A surface modifier enhances the performance of the all-inorganic CsPbI2Br perovskite solar cells with efficiencies approaching 15</title><author>Wang, Kaiyuan ; Zhou, Jiyu ; Li, Xing ; Ahmad, Nafees ; Xia, Haoran ; Wu, Guangbao ; Zhang, Xuning ; Wang, Boxing ; Zhang, Dongyang ; Zou, Yu ; Zhou, Huiqiong ; Zhang, Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g253t-b98c98fff2605c8a0a42d0427f0dc7fd6305d06575f271c5d0a38d06c959879e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Carrier recombination</topic><topic>Carrier transport</topic><topic>Crystal defects</topic><topic>Crystallization</topic><topic>Energy conversion efficiency</topic><topic>Low temperature</topic><topic>Performance enhancement</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Pinholes</topic><topic>Solar cells</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Kaiyuan</creatorcontrib><creatorcontrib>Zhou, Jiyu</creatorcontrib><creatorcontrib>Li, Xing</creatorcontrib><creatorcontrib>Ahmad, Nafees</creatorcontrib><creatorcontrib>Xia, Haoran</creatorcontrib><creatorcontrib>Wu, Guangbao</creatorcontrib><creatorcontrib>Zhang, Xuning</creatorcontrib><creatorcontrib>Wang, Boxing</creatorcontrib><creatorcontrib>Zhang, Dongyang</creatorcontrib><creatorcontrib>Zou, Yu</creatorcontrib><creatorcontrib>Zhou, Huiqiong</creatorcontrib><creatorcontrib>Zhang, Yuan</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Kaiyuan</au><au>Zhou, Jiyu</au><au>Li, Xing</au><au>Ahmad, Nafees</au><au>Xia, Haoran</au><au>Wu, Guangbao</au><au>Zhang, Xuning</au><au>Wang, Boxing</au><au>Zhang, Dongyang</au><au>Zou, Yu</au><au>Zhou, Huiqiong</au><au>Zhang, Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A surface modifier enhances the performance of the all-inorganic CsPbI2Br perovskite solar cells with efficiencies approaching 15</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2020-08-28</date><risdate>2020</risdate><volume>22</volume><issue>32</issue><spage>17847</spage><epage>17856</epage><pages>17847-17856</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>All-inorganic perovskite solar cells (PSCs) are attracting considerable attention due to their promising thermal stability, but their inferior power-conversion efficiencies (PCE) hinder their realistic application. Here, we propose an approach through surface modification based on methyl ammonium halide (MAX) for inorganic CsPbI2Br solar cells processed at a low temperature. The combined benefits of the introduced MAX modifier enable the boosting of the power conversion efficiency to 14.8% with an impressive FF of 82.2% in CsPbI2Br PSCs. Our experimental analyses coupled with optical modeling indicate that the incorporated MAX leads to an effective passivation of the surface traps originating from Pb2+ and I− ions in CsPbI2Br and simultaneously mediates the crystallization of CsPbI2Br with slightly enlarged grains and reduced numbers of structural defects and pinhole. As a result, the interfacial trap-assisted recombination is suppressed and the charge extraction is promoted. Mechanistically, we show that in the presence of MAX, the deep-level traps in the perovskites are passivated, leaving the energy of the trapping centers to become shallower. In this situation, the negative impacts of the traps on carrier transport and recombination are mitigated.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0cp01437k</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2020-08, Vol.22 (32), p.17847-17856
issn 1463-9076
1463-9084
language eng
recordid cdi_proquest_miscellaneous_2431817725
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Carrier recombination
Carrier transport
Crystal defects
Crystallization
Energy conversion efficiency
Low temperature
Performance enhancement
Perovskites
Photovoltaic cells
Pinholes
Solar cells
Thermal stability
title A surface modifier enhances the performance of the all-inorganic CsPbI2Br perovskite solar cells with efficiencies approaching 15
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T00%3A19%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20surface%20modifier%20enhances%20the%20performance%20of%20the%20all-inorganic%20CsPbI2Br%20perovskite%20solar%20cells%20with%20efficiencies%20approaching%2015&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Wang,%20Kaiyuan&rft.date=2020-08-28&rft.volume=22&rft.issue=32&rft.spage=17847&rft.epage=17856&rft.pages=17847-17856&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d0cp01437k&rft_dat=%3Cproquest%3E2431817725%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2436405803&rft_id=info:pmid/&rfr_iscdi=true