Genomics to accelerate genetic improvement in tilapia
Summary Selective breeding of tilapia populations started in the early 1990s and over the past three decades tilapia has become one of the most important farmed freshwater species, being produced in more than 125 countries around the globe. Although genome assemblies have been available since 2011,...
Gespeichert in:
Veröffentlicht in: | Animal genetics 2020-10, Vol.51 (5), p.658-674 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 674 |
---|---|
container_issue | 5 |
container_start_page | 658 |
container_title | Animal genetics |
container_volume | 51 |
creator | Yáñez, J. M. Joshi, R. Yoshida, G. M. |
description | Summary
Selective breeding of tilapia populations started in the early 1990s and over the past three decades tilapia has become one of the most important farmed freshwater species, being produced in more than 125 countries around the globe. Although genome assemblies have been available since 2011, most of the tilapia industry still depends on classical selection techniques using mass spawning or pedigree information to select for growth traits with reported genetic gains of up to 20% per generation. The involvement of international breeding companies and research institutions has resulted in the rapid development and application of genomic resources in the last few years. GWAS and genomic selection are expected to contribute to uncovering the genetic variants involved in economically relevant traits and increasing the genetic gain in selective breeding programs, respectively. Developments over the next few years will probably focus on achieving a deep understanding of genetic architecture of complex traits, as well as accelerating genetic progress in the selection for growth‐, quality‐ and robustness‐related traits. Novel phenotyping technologies (i.e. phenomics), lower‐cost whole‐genome sequencing approaches, functional genomics and gene editing tools will be crucial in future developments for the improvement of tilapia aquaculture. |
doi_str_mv | 10.1111/age.12989 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2431816888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2431816888</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3889-c630a4e475dcd00ae57893f0f29f083a6c646489d0cabb52736dc2a833ca44393</originalsourceid><addsrcrecordid>eNp10EtLAzEUBeAgiq3VhX9ABtzoYtq8JpMsS6lVKLjRdUgzd0rKPGoyo_TfG53qQvBu7ubjcDgIXRM8JfFmZgtTQpVUJ2hMmMhSijN6isaYCpkqwsUIXYSwwxhLkpNzNGI0F0RwPkbZCpq2djYkXZsYa6ECbzpIttBA52zi6r1v36GGpktck3SuMntnLtFZaaoAV8c_Qa8Py5fFY7p-Xj0t5uvUMilVagXDhgPPs8IWGBvIcqlYiUuqSiyZEVZwwaUqsDWbTUZzJgpLjWTMGs6ZYhN0N-TGEm89hE7XLsSOlWmg7YOmnBFJhJQy0ts_dNf2vontouJE5EIwFtX9oKxvQ_BQ6r13tfEHTbD-2lLHLfX3ltHeHBP7TQ3Fr_wZL4LZAD5cBYf_k_R8tRwiPwE_tHtj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441676633</pqid></control><display><type>article</type><title>Genomics to accelerate genetic improvement in tilapia</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yáñez, J. M. ; Joshi, R. ; Yoshida, G. M.</creator><creatorcontrib>Yáñez, J. M. ; Joshi, R. ; Yoshida, G. M.</creatorcontrib><description>Summary
Selective breeding of tilapia populations started in the early 1990s and over the past three decades tilapia has become one of the most important farmed freshwater species, being produced in more than 125 countries around the globe. Although genome assemblies have been available since 2011, most of the tilapia industry still depends on classical selection techniques using mass spawning or pedigree information to select for growth traits with reported genetic gains of up to 20% per generation. The involvement of international breeding companies and research institutions has resulted in the rapid development and application of genomic resources in the last few years. GWAS and genomic selection are expected to contribute to uncovering the genetic variants involved in economically relevant traits and increasing the genetic gain in selective breeding programs, respectively. Developments over the next few years will probably focus on achieving a deep understanding of genetic architecture of complex traits, as well as accelerating genetic progress in the selection for growth‐, quality‐ and robustness‐related traits. Novel phenotyping technologies (i.e. phenomics), lower‐cost whole‐genome sequencing approaches, functional genomics and gene editing tools will be crucial in future developments for the improvement of tilapia aquaculture.</description><identifier>ISSN: 0268-9146</identifier><identifier>EISSN: 1365-2052</identifier><identifier>DOI: 10.1111/age.12989</identifier><identifier>PMID: 32761644</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Animals ; Aquaculture ; Aquaculture - methods ; Breeding ; domestication ; Fish populations ; Gene sequencing ; Genetic diversity ; Genetic improvement ; Genetic modification ; Genetic variance ; Genomes ; genomic selection ; Genomics ; Genomics - methods ; GWAS ; Oreochromis niloticus ; Phenotyping ; Research facilities ; Research institutions ; Selective breeding ; sex determination ; Spawning ; Tilapia ; Tilapia - genetics ; Whole genome sequencing</subject><ispartof>Animal genetics, 2020-10, Vol.51 (5), p.658-674</ispartof><rights>2020 Stichting International Foundation for Animal Genetics</rights><rights>2020 Stichting International Foundation for Animal Genetics.</rights><rights>Copyright © 2020 Stichting International Foundation for Animal Genetics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3889-c630a4e475dcd00ae57893f0f29f083a6c646489d0cabb52736dc2a833ca44393</citedby><cites>FETCH-LOGICAL-c3889-c630a4e475dcd00ae57893f0f29f083a6c646489d0cabb52736dc2a833ca44393</cites><orcidid>0000-0002-6788-7369 ; 0000-0002-6612-4087 ; 0000-0002-4363-0817</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fage.12989$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fage.12989$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32761644$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yáñez, J. M.</creatorcontrib><creatorcontrib>Joshi, R.</creatorcontrib><creatorcontrib>Yoshida, G. M.</creatorcontrib><title>Genomics to accelerate genetic improvement in tilapia</title><title>Animal genetics</title><addtitle>Anim Genet</addtitle><description>Summary
Selective breeding of tilapia populations started in the early 1990s and over the past three decades tilapia has become one of the most important farmed freshwater species, being produced in more than 125 countries around the globe. Although genome assemblies have been available since 2011, most of the tilapia industry still depends on classical selection techniques using mass spawning or pedigree information to select for growth traits with reported genetic gains of up to 20% per generation. The involvement of international breeding companies and research institutions has resulted in the rapid development and application of genomic resources in the last few years. GWAS and genomic selection are expected to contribute to uncovering the genetic variants involved in economically relevant traits and increasing the genetic gain in selective breeding programs, respectively. Developments over the next few years will probably focus on achieving a deep understanding of genetic architecture of complex traits, as well as accelerating genetic progress in the selection for growth‐, quality‐ and robustness‐related traits. Novel phenotyping technologies (i.e. phenomics), lower‐cost whole‐genome sequencing approaches, functional genomics and gene editing tools will be crucial in future developments for the improvement of tilapia aquaculture.</description><subject>Animals</subject><subject>Aquaculture</subject><subject>Aquaculture - methods</subject><subject>Breeding</subject><subject>domestication</subject><subject>Fish populations</subject><subject>Gene sequencing</subject><subject>Genetic diversity</subject><subject>Genetic improvement</subject><subject>Genetic modification</subject><subject>Genetic variance</subject><subject>Genomes</subject><subject>genomic selection</subject><subject>Genomics</subject><subject>Genomics - methods</subject><subject>GWAS</subject><subject>Oreochromis niloticus</subject><subject>Phenotyping</subject><subject>Research facilities</subject><subject>Research institutions</subject><subject>Selective breeding</subject><subject>sex determination</subject><subject>Spawning</subject><subject>Tilapia</subject><subject>Tilapia - genetics</subject><subject>Whole genome sequencing</subject><issn>0268-9146</issn><issn>1365-2052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10EtLAzEUBeAgiq3VhX9ABtzoYtq8JpMsS6lVKLjRdUgzd0rKPGoyo_TfG53qQvBu7ubjcDgIXRM8JfFmZgtTQpVUJ2hMmMhSijN6isaYCpkqwsUIXYSwwxhLkpNzNGI0F0RwPkbZCpq2djYkXZsYa6ECbzpIttBA52zi6r1v36GGpktck3SuMntnLtFZaaoAV8c_Qa8Py5fFY7p-Xj0t5uvUMilVagXDhgPPs8IWGBvIcqlYiUuqSiyZEVZwwaUqsDWbTUZzJgpLjWTMGs6ZYhN0N-TGEm89hE7XLsSOlWmg7YOmnBFJhJQy0ts_dNf2vontouJE5EIwFtX9oKxvQ_BQ6r13tfEHTbD-2lLHLfX3ltHeHBP7TQ3Fr_wZL4LZAD5cBYf_k_R8tRwiPwE_tHtj</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Yáñez, J. M.</creator><creator>Joshi, R.</creator><creator>Yoshida, G. M.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6788-7369</orcidid><orcidid>https://orcid.org/0000-0002-6612-4087</orcidid><orcidid>https://orcid.org/0000-0002-4363-0817</orcidid></search><sort><creationdate>202010</creationdate><title>Genomics to accelerate genetic improvement in tilapia</title><author>Yáñez, J. M. ; Joshi, R. ; Yoshida, G. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3889-c630a4e475dcd00ae57893f0f29f083a6c646489d0cabb52736dc2a833ca44393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Aquaculture</topic><topic>Aquaculture - methods</topic><topic>Breeding</topic><topic>domestication</topic><topic>Fish populations</topic><topic>Gene sequencing</topic><topic>Genetic diversity</topic><topic>Genetic improvement</topic><topic>Genetic modification</topic><topic>Genetic variance</topic><topic>Genomes</topic><topic>genomic selection</topic><topic>Genomics</topic><topic>Genomics - methods</topic><topic>GWAS</topic><topic>Oreochromis niloticus</topic><topic>Phenotyping</topic><topic>Research facilities</topic><topic>Research institutions</topic><topic>Selective breeding</topic><topic>sex determination</topic><topic>Spawning</topic><topic>Tilapia</topic><topic>Tilapia - genetics</topic><topic>Whole genome sequencing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yáñez, J. M.</creatorcontrib><creatorcontrib>Joshi, R.</creatorcontrib><creatorcontrib>Yoshida, G. M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Animal genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yáñez, J. M.</au><au>Joshi, R.</au><au>Yoshida, G. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genomics to accelerate genetic improvement in tilapia</atitle><jtitle>Animal genetics</jtitle><addtitle>Anim Genet</addtitle><date>2020-10</date><risdate>2020</risdate><volume>51</volume><issue>5</issue><spage>658</spage><epage>674</epage><pages>658-674</pages><issn>0268-9146</issn><eissn>1365-2052</eissn><abstract>Summary
Selective breeding of tilapia populations started in the early 1990s and over the past three decades tilapia has become one of the most important farmed freshwater species, being produced in more than 125 countries around the globe. Although genome assemblies have been available since 2011, most of the tilapia industry still depends on classical selection techniques using mass spawning or pedigree information to select for growth traits with reported genetic gains of up to 20% per generation. The involvement of international breeding companies and research institutions has resulted in the rapid development and application of genomic resources in the last few years. GWAS and genomic selection are expected to contribute to uncovering the genetic variants involved in economically relevant traits and increasing the genetic gain in selective breeding programs, respectively. Developments over the next few years will probably focus on achieving a deep understanding of genetic architecture of complex traits, as well as accelerating genetic progress in the selection for growth‐, quality‐ and robustness‐related traits. Novel phenotyping technologies (i.e. phenomics), lower‐cost whole‐genome sequencing approaches, functional genomics and gene editing tools will be crucial in future developments for the improvement of tilapia aquaculture.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32761644</pmid><doi>10.1111/age.12989</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-6788-7369</orcidid><orcidid>https://orcid.org/0000-0002-6612-4087</orcidid><orcidid>https://orcid.org/0000-0002-4363-0817</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-9146 |
ispartof | Animal genetics, 2020-10, Vol.51 (5), p.658-674 |
issn | 0268-9146 1365-2052 |
language | eng |
recordid | cdi_proquest_miscellaneous_2431816888 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Animals Aquaculture Aquaculture - methods Breeding domestication Fish populations Gene sequencing Genetic diversity Genetic improvement Genetic modification Genetic variance Genomes genomic selection Genomics Genomics - methods GWAS Oreochromis niloticus Phenotyping Research facilities Research institutions Selective breeding sex determination Spawning Tilapia Tilapia - genetics Whole genome sequencing |
title | Genomics to accelerate genetic improvement in tilapia |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T04%3A23%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genomics%20to%20accelerate%20genetic%20improvement%20in%20tilapia&rft.jtitle=Animal%20genetics&rft.au=Y%C3%A1%C3%B1ez,%20J.%20M.&rft.date=2020-10&rft.volume=51&rft.issue=5&rft.spage=658&rft.epage=674&rft.pages=658-674&rft.issn=0268-9146&rft.eissn=1365-2052&rft_id=info:doi/10.1111/age.12989&rft_dat=%3Cproquest_cross%3E2431816888%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2441676633&rft_id=info:pmid/32761644&rfr_iscdi=true |