Genomics to accelerate genetic improvement in tilapia

Summary Selective breeding of tilapia populations started in the early 1990s and over the past three decades tilapia has become one of the most important farmed freshwater species, being produced in more than 125 countries around the globe. Although genome assemblies have been available since 2011,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Animal genetics 2020-10, Vol.51 (5), p.658-674
Hauptverfasser: Yáñez, J. M., Joshi, R., Yoshida, G. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 674
container_issue 5
container_start_page 658
container_title Animal genetics
container_volume 51
creator Yáñez, J. M.
Joshi, R.
Yoshida, G. M.
description Summary Selective breeding of tilapia populations started in the early 1990s and over the past three decades tilapia has become one of the most important farmed freshwater species, being produced in more than 125 countries around the globe. Although genome assemblies have been available since 2011, most of the tilapia industry still depends on classical selection techniques using mass spawning or pedigree information to select for growth traits with reported genetic gains of up to 20% per generation. The involvement of international breeding companies and research institutions has resulted in the rapid development and application of genomic resources in the last few years. GWAS and genomic selection are expected to contribute to uncovering the genetic variants involved in economically relevant traits and increasing the genetic gain in selective breeding programs, respectively. Developments over the next few years will probably focus on achieving a deep understanding of genetic architecture of complex traits, as well as accelerating genetic progress in the selection for growth‐, quality‐ and robustness‐related traits. Novel phenotyping technologies (i.e. phenomics), lower‐cost whole‐genome sequencing approaches, functional genomics and gene editing tools will be crucial in future developments for the improvement of tilapia aquaculture.
doi_str_mv 10.1111/age.12989
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2431816888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2431816888</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3889-c630a4e475dcd00ae57893f0f29f083a6c646489d0cabb52736dc2a833ca44393</originalsourceid><addsrcrecordid>eNp10EtLAzEUBeAgiq3VhX9ABtzoYtq8JpMsS6lVKLjRdUgzd0rKPGoyo_TfG53qQvBu7ubjcDgIXRM8JfFmZgtTQpVUJ2hMmMhSijN6isaYCpkqwsUIXYSwwxhLkpNzNGI0F0RwPkbZCpq2djYkXZsYa6ECbzpIttBA52zi6r1v36GGpktck3SuMntnLtFZaaoAV8c_Qa8Py5fFY7p-Xj0t5uvUMilVagXDhgPPs8IWGBvIcqlYiUuqSiyZEVZwwaUqsDWbTUZzJgpLjWTMGs6ZYhN0N-TGEm89hE7XLsSOlWmg7YOmnBFJhJQy0ts_dNf2vontouJE5EIwFtX9oKxvQ_BQ6r13tfEHTbD-2lLHLfX3ltHeHBP7TQ3Fr_wZL4LZAD5cBYf_k_R8tRwiPwE_tHtj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441676633</pqid></control><display><type>article</type><title>Genomics to accelerate genetic improvement in tilapia</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yáñez, J. M. ; Joshi, R. ; Yoshida, G. M.</creator><creatorcontrib>Yáñez, J. M. ; Joshi, R. ; Yoshida, G. M.</creatorcontrib><description>Summary Selective breeding of tilapia populations started in the early 1990s and over the past three decades tilapia has become one of the most important farmed freshwater species, being produced in more than 125 countries around the globe. Although genome assemblies have been available since 2011, most of the tilapia industry still depends on classical selection techniques using mass spawning or pedigree information to select for growth traits with reported genetic gains of up to 20% per generation. The involvement of international breeding companies and research institutions has resulted in the rapid development and application of genomic resources in the last few years. GWAS and genomic selection are expected to contribute to uncovering the genetic variants involved in economically relevant traits and increasing the genetic gain in selective breeding programs, respectively. Developments over the next few years will probably focus on achieving a deep understanding of genetic architecture of complex traits, as well as accelerating genetic progress in the selection for growth‐, quality‐ and robustness‐related traits. Novel phenotyping technologies (i.e. phenomics), lower‐cost whole‐genome sequencing approaches, functional genomics and gene editing tools will be crucial in future developments for the improvement of tilapia aquaculture.</description><identifier>ISSN: 0268-9146</identifier><identifier>EISSN: 1365-2052</identifier><identifier>DOI: 10.1111/age.12989</identifier><identifier>PMID: 32761644</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Animals ; Aquaculture ; Aquaculture - methods ; Breeding ; domestication ; Fish populations ; Gene sequencing ; Genetic diversity ; Genetic improvement ; Genetic modification ; Genetic variance ; Genomes ; genomic selection ; Genomics ; Genomics - methods ; GWAS ; Oreochromis niloticus ; Phenotyping ; Research facilities ; Research institutions ; Selective breeding ; sex determination ; Spawning ; Tilapia ; Tilapia - genetics ; Whole genome sequencing</subject><ispartof>Animal genetics, 2020-10, Vol.51 (5), p.658-674</ispartof><rights>2020 Stichting International Foundation for Animal Genetics</rights><rights>2020 Stichting International Foundation for Animal Genetics.</rights><rights>Copyright © 2020 Stichting International Foundation for Animal Genetics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3889-c630a4e475dcd00ae57893f0f29f083a6c646489d0cabb52736dc2a833ca44393</citedby><cites>FETCH-LOGICAL-c3889-c630a4e475dcd00ae57893f0f29f083a6c646489d0cabb52736dc2a833ca44393</cites><orcidid>0000-0002-6788-7369 ; 0000-0002-6612-4087 ; 0000-0002-4363-0817</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fage.12989$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fage.12989$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32761644$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yáñez, J. M.</creatorcontrib><creatorcontrib>Joshi, R.</creatorcontrib><creatorcontrib>Yoshida, G. M.</creatorcontrib><title>Genomics to accelerate genetic improvement in tilapia</title><title>Animal genetics</title><addtitle>Anim Genet</addtitle><description>Summary Selective breeding of tilapia populations started in the early 1990s and over the past three decades tilapia has become one of the most important farmed freshwater species, being produced in more than 125 countries around the globe. Although genome assemblies have been available since 2011, most of the tilapia industry still depends on classical selection techniques using mass spawning or pedigree information to select for growth traits with reported genetic gains of up to 20% per generation. The involvement of international breeding companies and research institutions has resulted in the rapid development and application of genomic resources in the last few years. GWAS and genomic selection are expected to contribute to uncovering the genetic variants involved in economically relevant traits and increasing the genetic gain in selective breeding programs, respectively. Developments over the next few years will probably focus on achieving a deep understanding of genetic architecture of complex traits, as well as accelerating genetic progress in the selection for growth‐, quality‐ and robustness‐related traits. Novel phenotyping technologies (i.e. phenomics), lower‐cost whole‐genome sequencing approaches, functional genomics and gene editing tools will be crucial in future developments for the improvement of tilapia aquaculture.</description><subject>Animals</subject><subject>Aquaculture</subject><subject>Aquaculture - methods</subject><subject>Breeding</subject><subject>domestication</subject><subject>Fish populations</subject><subject>Gene sequencing</subject><subject>Genetic diversity</subject><subject>Genetic improvement</subject><subject>Genetic modification</subject><subject>Genetic variance</subject><subject>Genomes</subject><subject>genomic selection</subject><subject>Genomics</subject><subject>Genomics - methods</subject><subject>GWAS</subject><subject>Oreochromis niloticus</subject><subject>Phenotyping</subject><subject>Research facilities</subject><subject>Research institutions</subject><subject>Selective breeding</subject><subject>sex determination</subject><subject>Spawning</subject><subject>Tilapia</subject><subject>Tilapia - genetics</subject><subject>Whole genome sequencing</subject><issn>0268-9146</issn><issn>1365-2052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10EtLAzEUBeAgiq3VhX9ABtzoYtq8JpMsS6lVKLjRdUgzd0rKPGoyo_TfG53qQvBu7ubjcDgIXRM8JfFmZgtTQpVUJ2hMmMhSijN6isaYCpkqwsUIXYSwwxhLkpNzNGI0F0RwPkbZCpq2djYkXZsYa6ECbzpIttBA52zi6r1v36GGpktck3SuMntnLtFZaaoAV8c_Qa8Py5fFY7p-Xj0t5uvUMilVagXDhgPPs8IWGBvIcqlYiUuqSiyZEVZwwaUqsDWbTUZzJgpLjWTMGs6ZYhN0N-TGEm89hE7XLsSOlWmg7YOmnBFJhJQy0ts_dNf2vontouJE5EIwFtX9oKxvQ_BQ6r13tfEHTbD-2lLHLfX3ltHeHBP7TQ3Fr_wZL4LZAD5cBYf_k_R8tRwiPwE_tHtj</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Yáñez, J. M.</creator><creator>Joshi, R.</creator><creator>Yoshida, G. M.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6788-7369</orcidid><orcidid>https://orcid.org/0000-0002-6612-4087</orcidid><orcidid>https://orcid.org/0000-0002-4363-0817</orcidid></search><sort><creationdate>202010</creationdate><title>Genomics to accelerate genetic improvement in tilapia</title><author>Yáñez, J. M. ; Joshi, R. ; Yoshida, G. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3889-c630a4e475dcd00ae57893f0f29f083a6c646489d0cabb52736dc2a833ca44393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Aquaculture</topic><topic>Aquaculture - methods</topic><topic>Breeding</topic><topic>domestication</topic><topic>Fish populations</topic><topic>Gene sequencing</topic><topic>Genetic diversity</topic><topic>Genetic improvement</topic><topic>Genetic modification</topic><topic>Genetic variance</topic><topic>Genomes</topic><topic>genomic selection</topic><topic>Genomics</topic><topic>Genomics - methods</topic><topic>GWAS</topic><topic>Oreochromis niloticus</topic><topic>Phenotyping</topic><topic>Research facilities</topic><topic>Research institutions</topic><topic>Selective breeding</topic><topic>sex determination</topic><topic>Spawning</topic><topic>Tilapia</topic><topic>Tilapia - genetics</topic><topic>Whole genome sequencing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yáñez, J. M.</creatorcontrib><creatorcontrib>Joshi, R.</creatorcontrib><creatorcontrib>Yoshida, G. M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Animal genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yáñez, J. M.</au><au>Joshi, R.</au><au>Yoshida, G. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genomics to accelerate genetic improvement in tilapia</atitle><jtitle>Animal genetics</jtitle><addtitle>Anim Genet</addtitle><date>2020-10</date><risdate>2020</risdate><volume>51</volume><issue>5</issue><spage>658</spage><epage>674</epage><pages>658-674</pages><issn>0268-9146</issn><eissn>1365-2052</eissn><abstract>Summary Selective breeding of tilapia populations started in the early 1990s and over the past three decades tilapia has become one of the most important farmed freshwater species, being produced in more than 125 countries around the globe. Although genome assemblies have been available since 2011, most of the tilapia industry still depends on classical selection techniques using mass spawning or pedigree information to select for growth traits with reported genetic gains of up to 20% per generation. The involvement of international breeding companies and research institutions has resulted in the rapid development and application of genomic resources in the last few years. GWAS and genomic selection are expected to contribute to uncovering the genetic variants involved in economically relevant traits and increasing the genetic gain in selective breeding programs, respectively. Developments over the next few years will probably focus on achieving a deep understanding of genetic architecture of complex traits, as well as accelerating genetic progress in the selection for growth‐, quality‐ and robustness‐related traits. Novel phenotyping technologies (i.e. phenomics), lower‐cost whole‐genome sequencing approaches, functional genomics and gene editing tools will be crucial in future developments for the improvement of tilapia aquaculture.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32761644</pmid><doi>10.1111/age.12989</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-6788-7369</orcidid><orcidid>https://orcid.org/0000-0002-6612-4087</orcidid><orcidid>https://orcid.org/0000-0002-4363-0817</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0268-9146
ispartof Animal genetics, 2020-10, Vol.51 (5), p.658-674
issn 0268-9146
1365-2052
language eng
recordid cdi_proquest_miscellaneous_2431816888
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
Aquaculture
Aquaculture - methods
Breeding
domestication
Fish populations
Gene sequencing
Genetic diversity
Genetic improvement
Genetic modification
Genetic variance
Genomes
genomic selection
Genomics
Genomics - methods
GWAS
Oreochromis niloticus
Phenotyping
Research facilities
Research institutions
Selective breeding
sex determination
Spawning
Tilapia
Tilapia - genetics
Whole genome sequencing
title Genomics to accelerate genetic improvement in tilapia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T04%3A23%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genomics%20to%20accelerate%20genetic%20improvement%20in%20tilapia&rft.jtitle=Animal%20genetics&rft.au=Y%C3%A1%C3%B1ez,%20J.%20M.&rft.date=2020-10&rft.volume=51&rft.issue=5&rft.spage=658&rft.epage=674&rft.pages=658-674&rft.issn=0268-9146&rft.eissn=1365-2052&rft_id=info:doi/10.1111/age.12989&rft_dat=%3Cproquest_cross%3E2431816888%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2441676633&rft_id=info:pmid/32761644&rfr_iscdi=true