In vitro cell stretching technology (IsoStretcher) as an approach to unravel Piezo1-mediated cardiac mechanotransduction
The transformation of electrical signals into mechanical action of the heart underlying blood circulation results in mechanical stimuli during active contraction or passive filling distention, which conversely modulate electrical signals. This feedback mechanism is known as cardiac mechano-electric...
Gespeichert in:
Veröffentlicht in: | Progress in biophysics and molecular biology 2021-01, Vol.159, p.22-33 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 33 |
---|---|
container_issue | |
container_start_page | 22 |
container_title | Progress in biophysics and molecular biology |
container_volume | 159 |
creator | Guo, Yang Merten, Anna-Lena Schöler, Ulrike Yu, Ze-Yan Cvetkovska, Jasmina Fatkin, Diane Feneley, Michael P. Martinac, Boris Friedrich, Oliver |
description | The transformation of electrical signals into mechanical action of the heart underlying blood circulation results in mechanical stimuli during active contraction or passive filling distention, which conversely modulate electrical signals. This feedback mechanism is known as cardiac mechano-electric coupling (MEC). The cardiac MEC involves complex activation of mechanical biosensors initiating short-term and long-term effects through Ca2+ signals in cardiomyocytes in acute and chronic pressure overload scenarios (e.g. cardiac hypertrophy). Although it is largely still unknown how mechanical forces alter cardiac function at the molecular level, mechanosensitive channels, including the recently discovered family of Piezo channels, have been thought to play a major role in the cardiac MEC and are also suspected to contribute to development of cardiac hypertrophy and heart failure. The earliest reports of mechanosensitive channel activity recognized that their gating could be controlled by membrane stretch. In this article, we provide an overview of the stretch devices, which have been employed for studies of the effects of mechanical stimuli on muscle and heart cells. We also describe novel experiments examining the activity of Piezo1 channels under multiaxial stretch applied using polydimethylsiloxane (PDMS) stretch chambers and IsoStretcher technology to achieve isotropic stretching stimulation to cultured HL-1 cardiac muscle cells which express an appreciable amount of Piezo1. |
doi_str_mv | 10.1016/j.pbiomolbio.2020.07.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2431816784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0079610720300675</els_id><sourcerecordid>2431816784</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-9329cdef0130f34c522b90b5f69f9c98ff9e3a506b85b6d5fee4490cf369dda73</originalsourceid><addsrcrecordid>eNqFkEuO1DAQhi0EYpqBKyAvh0VC2U7iZAkjHi2NBBKwthynPO1WYje201JzGs7CyXCrB1iyqSqp_nr8HyGUQc2Ada_39WF0YQlziTUHDjXIGkA8IhvWS1ExKfhjsgGQQ9UxkFfkWUp7AOBMdk_JleCyE7yVG3La-l8_jy7HQA3OM005YjY75-9pRrPzYQ73J3qzTeHLpYPxFdWJak_14RCDNjuaA1191Eec6WeHPwKrFpyczjhRo2OpDF3KLu1DjtqnaTXZBf-cPLF6TvjiIV-Tb-_ffb39WN19-rC9fXNXGSGbXA2CD2ZCC0yAFY1pOR8HGFvbDXYwQ2_tgEK30I19O3ZTaxGbZgBjRTdMk5bimtxc9pZvv6-YslpcOnvVHsOaFG8E61kn-6ZI-4vUxJBSRKsO0S06nhQDdQav9uofeHUGr0CqAr6Mvny4so7F_d_BP6SL4O1FgMXr0WFUyTj0ppCKaLKagvv_ld8wkJ0t</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2431816784</pqid></control><display><type>article</type><title>In vitro cell stretching technology (IsoStretcher) as an approach to unravel Piezo1-mediated cardiac mechanotransduction</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Guo, Yang ; Merten, Anna-Lena ; Schöler, Ulrike ; Yu, Ze-Yan ; Cvetkovska, Jasmina ; Fatkin, Diane ; Feneley, Michael P. ; Martinac, Boris ; Friedrich, Oliver</creator><creatorcontrib>Guo, Yang ; Merten, Anna-Lena ; Schöler, Ulrike ; Yu, Ze-Yan ; Cvetkovska, Jasmina ; Fatkin, Diane ; Feneley, Michael P. ; Martinac, Boris ; Friedrich, Oliver</creatorcontrib><description>The transformation of electrical signals into mechanical action of the heart underlying blood circulation results in mechanical stimuli during active contraction or passive filling distention, which conversely modulate electrical signals. This feedback mechanism is known as cardiac mechano-electric coupling (MEC). The cardiac MEC involves complex activation of mechanical biosensors initiating short-term and long-term effects through Ca2+ signals in cardiomyocytes in acute and chronic pressure overload scenarios (e.g. cardiac hypertrophy). Although it is largely still unknown how mechanical forces alter cardiac function at the molecular level, mechanosensitive channels, including the recently discovered family of Piezo channels, have been thought to play a major role in the cardiac MEC and are also suspected to contribute to development of cardiac hypertrophy and heart failure. The earliest reports of mechanosensitive channel activity recognized that their gating could be controlled by membrane stretch. In this article, we provide an overview of the stretch devices, which have been employed for studies of the effects of mechanical stimuli on muscle and heart cells. We also describe novel experiments examining the activity of Piezo1 channels under multiaxial stretch applied using polydimethylsiloxane (PDMS) stretch chambers and IsoStretcher technology to achieve isotropic stretching stimulation to cultured HL-1 cardiac muscle cells which express an appreciable amount of Piezo1.</description><identifier>ISSN: 0079-6107</identifier><identifier>EISSN: 1873-1732</identifier><identifier>DOI: 10.1016/j.pbiomolbio.2020.07.003</identifier><identifier>PMID: 32763257</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Biosensing Techniques - instrumentation ; Biosensing Techniques - methods ; Calcium - metabolism ; Cell Line ; Cell stretching device ; Cells, Cultured ; Dimethylpolysiloxanes - metabolism ; HL-1 ; Humans ; Ion Channels - metabolism ; Male ; Mechanosensitive ion channel ; Mechanotransduction ; Mechanotransduction, Cellular - physiology ; Mice ; Mice, Inbred C57BL ; Models, Biological ; Myocardium - cytology ; Myocardium - metabolism ; Myocytes, Cardiac - metabolism ; Piezo1 ; Polydimethylsiloxane (PDMS) ; Stress, Mechanical</subject><ispartof>Progress in biophysics and molecular biology, 2021-01, Vol.159, p.22-33</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright © 2020 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-9329cdef0130f34c522b90b5f69f9c98ff9e3a506b85b6d5fee4490cf369dda73</citedby><cites>FETCH-LOGICAL-c374t-9329cdef0130f34c522b90b5f69f9c98ff9e3a506b85b6d5fee4490cf369dda73</cites><orcidid>0000-0001-8422-7082 ; 0000-0001-6588-0684 ; 0000-0001-5374-1492 ; 0000-0002-6650-8865 ; 0000-0003-2238-2049</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0079610720300675$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32763257$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Yang</creatorcontrib><creatorcontrib>Merten, Anna-Lena</creatorcontrib><creatorcontrib>Schöler, Ulrike</creatorcontrib><creatorcontrib>Yu, Ze-Yan</creatorcontrib><creatorcontrib>Cvetkovska, Jasmina</creatorcontrib><creatorcontrib>Fatkin, Diane</creatorcontrib><creatorcontrib>Feneley, Michael P.</creatorcontrib><creatorcontrib>Martinac, Boris</creatorcontrib><creatorcontrib>Friedrich, Oliver</creatorcontrib><title>In vitro cell stretching technology (IsoStretcher) as an approach to unravel Piezo1-mediated cardiac mechanotransduction</title><title>Progress in biophysics and molecular biology</title><addtitle>Prog Biophys Mol Biol</addtitle><description>The transformation of electrical signals into mechanical action of the heart underlying blood circulation results in mechanical stimuli during active contraction or passive filling distention, which conversely modulate electrical signals. This feedback mechanism is known as cardiac mechano-electric coupling (MEC). The cardiac MEC involves complex activation of mechanical biosensors initiating short-term and long-term effects through Ca2+ signals in cardiomyocytes in acute and chronic pressure overload scenarios (e.g. cardiac hypertrophy). Although it is largely still unknown how mechanical forces alter cardiac function at the molecular level, mechanosensitive channels, including the recently discovered family of Piezo channels, have been thought to play a major role in the cardiac MEC and are also suspected to contribute to development of cardiac hypertrophy and heart failure. The earliest reports of mechanosensitive channel activity recognized that their gating could be controlled by membrane stretch. In this article, we provide an overview of the stretch devices, which have been employed for studies of the effects of mechanical stimuli on muscle and heart cells. We also describe novel experiments examining the activity of Piezo1 channels under multiaxial stretch applied using polydimethylsiloxane (PDMS) stretch chambers and IsoStretcher technology to achieve isotropic stretching stimulation to cultured HL-1 cardiac muscle cells which express an appreciable amount of Piezo1.</description><subject>Animals</subject><subject>Biosensing Techniques - instrumentation</subject><subject>Biosensing Techniques - methods</subject><subject>Calcium - metabolism</subject><subject>Cell Line</subject><subject>Cell stretching device</subject><subject>Cells, Cultured</subject><subject>Dimethylpolysiloxanes - metabolism</subject><subject>HL-1</subject><subject>Humans</subject><subject>Ion Channels - metabolism</subject><subject>Male</subject><subject>Mechanosensitive ion channel</subject><subject>Mechanotransduction</subject><subject>Mechanotransduction, Cellular - physiology</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Models, Biological</subject><subject>Myocardium - cytology</subject><subject>Myocardium - metabolism</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>Piezo1</subject><subject>Polydimethylsiloxane (PDMS)</subject><subject>Stress, Mechanical</subject><issn>0079-6107</issn><issn>1873-1732</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkEuO1DAQhi0EYpqBKyAvh0VC2U7iZAkjHi2NBBKwthynPO1WYje201JzGs7CyXCrB1iyqSqp_nr8HyGUQc2Ada_39WF0YQlziTUHDjXIGkA8IhvWS1ExKfhjsgGQQ9UxkFfkWUp7AOBMdk_JleCyE7yVG3La-l8_jy7HQA3OM005YjY75-9pRrPzYQ73J3qzTeHLpYPxFdWJak_14RCDNjuaA1191Eec6WeHPwKrFpyczjhRo2OpDF3KLu1DjtqnaTXZBf-cPLF6TvjiIV-Tb-_ffb39WN19-rC9fXNXGSGbXA2CD2ZCC0yAFY1pOR8HGFvbDXYwQ2_tgEK30I19O3ZTaxGbZgBjRTdMk5bimtxc9pZvv6-YslpcOnvVHsOaFG8E61kn-6ZI-4vUxJBSRKsO0S06nhQDdQav9uofeHUGr0CqAr6Mvny4so7F_d_BP6SL4O1FgMXr0WFUyTj0ppCKaLKagvv_ld8wkJ0t</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Guo, Yang</creator><creator>Merten, Anna-Lena</creator><creator>Schöler, Ulrike</creator><creator>Yu, Ze-Yan</creator><creator>Cvetkovska, Jasmina</creator><creator>Fatkin, Diane</creator><creator>Feneley, Michael P.</creator><creator>Martinac, Boris</creator><creator>Friedrich, Oliver</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8422-7082</orcidid><orcidid>https://orcid.org/0000-0001-6588-0684</orcidid><orcidid>https://orcid.org/0000-0001-5374-1492</orcidid><orcidid>https://orcid.org/0000-0002-6650-8865</orcidid><orcidid>https://orcid.org/0000-0003-2238-2049</orcidid></search><sort><creationdate>202101</creationdate><title>In vitro cell stretching technology (IsoStretcher) as an approach to unravel Piezo1-mediated cardiac mechanotransduction</title><author>Guo, Yang ; Merten, Anna-Lena ; Schöler, Ulrike ; Yu, Ze-Yan ; Cvetkovska, Jasmina ; Fatkin, Diane ; Feneley, Michael P. ; Martinac, Boris ; Friedrich, Oliver</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-9329cdef0130f34c522b90b5f69f9c98ff9e3a506b85b6d5fee4490cf369dda73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Biosensing Techniques - instrumentation</topic><topic>Biosensing Techniques - methods</topic><topic>Calcium - metabolism</topic><topic>Cell Line</topic><topic>Cell stretching device</topic><topic>Cells, Cultured</topic><topic>Dimethylpolysiloxanes - metabolism</topic><topic>HL-1</topic><topic>Humans</topic><topic>Ion Channels - metabolism</topic><topic>Male</topic><topic>Mechanosensitive ion channel</topic><topic>Mechanotransduction</topic><topic>Mechanotransduction, Cellular - physiology</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Models, Biological</topic><topic>Myocardium - cytology</topic><topic>Myocardium - metabolism</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>Piezo1</topic><topic>Polydimethylsiloxane (PDMS)</topic><topic>Stress, Mechanical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Yang</creatorcontrib><creatorcontrib>Merten, Anna-Lena</creatorcontrib><creatorcontrib>Schöler, Ulrike</creatorcontrib><creatorcontrib>Yu, Ze-Yan</creatorcontrib><creatorcontrib>Cvetkovska, Jasmina</creatorcontrib><creatorcontrib>Fatkin, Diane</creatorcontrib><creatorcontrib>Feneley, Michael P.</creatorcontrib><creatorcontrib>Martinac, Boris</creatorcontrib><creatorcontrib>Friedrich, Oliver</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Progress in biophysics and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Yang</au><au>Merten, Anna-Lena</au><au>Schöler, Ulrike</au><au>Yu, Ze-Yan</au><au>Cvetkovska, Jasmina</au><au>Fatkin, Diane</au><au>Feneley, Michael P.</au><au>Martinac, Boris</au><au>Friedrich, Oliver</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vitro cell stretching technology (IsoStretcher) as an approach to unravel Piezo1-mediated cardiac mechanotransduction</atitle><jtitle>Progress in biophysics and molecular biology</jtitle><addtitle>Prog Biophys Mol Biol</addtitle><date>2021-01</date><risdate>2021</risdate><volume>159</volume><spage>22</spage><epage>33</epage><pages>22-33</pages><issn>0079-6107</issn><eissn>1873-1732</eissn><abstract>The transformation of electrical signals into mechanical action of the heart underlying blood circulation results in mechanical stimuli during active contraction or passive filling distention, which conversely modulate electrical signals. This feedback mechanism is known as cardiac mechano-electric coupling (MEC). The cardiac MEC involves complex activation of mechanical biosensors initiating short-term and long-term effects through Ca2+ signals in cardiomyocytes in acute and chronic pressure overload scenarios (e.g. cardiac hypertrophy). Although it is largely still unknown how mechanical forces alter cardiac function at the molecular level, mechanosensitive channels, including the recently discovered family of Piezo channels, have been thought to play a major role in the cardiac MEC and are also suspected to contribute to development of cardiac hypertrophy and heart failure. The earliest reports of mechanosensitive channel activity recognized that their gating could be controlled by membrane stretch. In this article, we provide an overview of the stretch devices, which have been employed for studies of the effects of mechanical stimuli on muscle and heart cells. We also describe novel experiments examining the activity of Piezo1 channels under multiaxial stretch applied using polydimethylsiloxane (PDMS) stretch chambers and IsoStretcher technology to achieve isotropic stretching stimulation to cultured HL-1 cardiac muscle cells which express an appreciable amount of Piezo1.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>32763257</pmid><doi>10.1016/j.pbiomolbio.2020.07.003</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8422-7082</orcidid><orcidid>https://orcid.org/0000-0001-6588-0684</orcidid><orcidid>https://orcid.org/0000-0001-5374-1492</orcidid><orcidid>https://orcid.org/0000-0002-6650-8865</orcidid><orcidid>https://orcid.org/0000-0003-2238-2049</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0079-6107 |
ispartof | Progress in biophysics and molecular biology, 2021-01, Vol.159, p.22-33 |
issn | 0079-6107 1873-1732 |
language | eng |
recordid | cdi_proquest_miscellaneous_2431816784 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Animals Biosensing Techniques - instrumentation Biosensing Techniques - methods Calcium - metabolism Cell Line Cell stretching device Cells, Cultured Dimethylpolysiloxanes - metabolism HL-1 Humans Ion Channels - metabolism Male Mechanosensitive ion channel Mechanotransduction Mechanotransduction, Cellular - physiology Mice Mice, Inbred C57BL Models, Biological Myocardium - cytology Myocardium - metabolism Myocytes, Cardiac - metabolism Piezo1 Polydimethylsiloxane (PDMS) Stress, Mechanical |
title | In vitro cell stretching technology (IsoStretcher) as an approach to unravel Piezo1-mediated cardiac mechanotransduction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T02%3A25%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%C2%A0vitro%20cell%20stretching%20technology%20(IsoStretcher)%20as%20an%20approach%20to%20unravel%20Piezo1-mediated%20cardiac%20mechanotransduction&rft.jtitle=Progress%20in%20biophysics%20and%20molecular%20biology&rft.au=Guo,%20Yang&rft.date=2021-01&rft.volume=159&rft.spage=22&rft.epage=33&rft.pages=22-33&rft.issn=0079-6107&rft.eissn=1873-1732&rft_id=info:doi/10.1016/j.pbiomolbio.2020.07.003&rft_dat=%3Cproquest_cross%3E2431816784%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2431816784&rft_id=info:pmid/32763257&rft_els_id=S0079610720300675&rfr_iscdi=true |