In vitro cell stretching technology (IsoStretcher) as an approach to unravel Piezo1-mediated cardiac mechanotransduction

The transformation of electrical signals into mechanical action of the heart underlying blood circulation results in mechanical stimuli during active contraction or passive filling distention, which conversely modulate electrical signals. This feedback mechanism is known as cardiac mechano-electric...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Progress in biophysics and molecular biology 2021-01, Vol.159, p.22-33
Hauptverfasser: Guo, Yang, Merten, Anna-Lena, Schöler, Ulrike, Yu, Ze-Yan, Cvetkovska, Jasmina, Fatkin, Diane, Feneley, Michael P., Martinac, Boris, Friedrich, Oliver
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 33
container_issue
container_start_page 22
container_title Progress in biophysics and molecular biology
container_volume 159
creator Guo, Yang
Merten, Anna-Lena
Schöler, Ulrike
Yu, Ze-Yan
Cvetkovska, Jasmina
Fatkin, Diane
Feneley, Michael P.
Martinac, Boris
Friedrich, Oliver
description The transformation of electrical signals into mechanical action of the heart underlying blood circulation results in mechanical stimuli during active contraction or passive filling distention, which conversely modulate electrical signals. This feedback mechanism is known as cardiac mechano-electric coupling (MEC). The cardiac MEC involves complex activation of mechanical biosensors initiating short-term and long-term effects through Ca2+ signals in cardiomyocytes in acute and chronic pressure overload scenarios (e.g. cardiac hypertrophy). Although it is largely still unknown how mechanical forces alter cardiac function at the molecular level, mechanosensitive channels, including the recently discovered family of Piezo channels, have been thought to play a major role in the cardiac MEC and are also suspected to contribute to development of cardiac hypertrophy and heart failure. The earliest reports of mechanosensitive channel activity recognized that their gating could be controlled by membrane stretch. In this article, we provide an overview of the stretch devices, which have been employed for studies of the effects of mechanical stimuli on muscle and heart cells. We also describe novel experiments examining the activity of Piezo1 channels under multiaxial stretch applied using polydimethylsiloxane (PDMS) stretch chambers and IsoStretcher technology to achieve isotropic stretching stimulation to cultured HL-1 cardiac muscle cells which express an appreciable amount of Piezo1.
doi_str_mv 10.1016/j.pbiomolbio.2020.07.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2431816784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0079610720300675</els_id><sourcerecordid>2431816784</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-9329cdef0130f34c522b90b5f69f9c98ff9e3a506b85b6d5fee4490cf369dda73</originalsourceid><addsrcrecordid>eNqFkEuO1DAQhi0EYpqBKyAvh0VC2U7iZAkjHi2NBBKwthynPO1WYje201JzGs7CyXCrB1iyqSqp_nr8HyGUQc2Ada_39WF0YQlziTUHDjXIGkA8IhvWS1ExKfhjsgGQQ9UxkFfkWUp7AOBMdk_JleCyE7yVG3La-l8_jy7HQA3OM005YjY75-9pRrPzYQ73J3qzTeHLpYPxFdWJak_14RCDNjuaA1191Eec6WeHPwKrFpyczjhRo2OpDF3KLu1DjtqnaTXZBf-cPLF6TvjiIV-Tb-_ffb39WN19-rC9fXNXGSGbXA2CD2ZCC0yAFY1pOR8HGFvbDXYwQ2_tgEK30I19O3ZTaxGbZgBjRTdMk5bimtxc9pZvv6-YslpcOnvVHsOaFG8E61kn-6ZI-4vUxJBSRKsO0S06nhQDdQav9uofeHUGr0CqAr6Mvny4so7F_d_BP6SL4O1FgMXr0WFUyTj0ppCKaLKagvv_ld8wkJ0t</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2431816784</pqid></control><display><type>article</type><title>In vitro cell stretching technology (IsoStretcher) as an approach to unravel Piezo1-mediated cardiac mechanotransduction</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Guo, Yang ; Merten, Anna-Lena ; Schöler, Ulrike ; Yu, Ze-Yan ; Cvetkovska, Jasmina ; Fatkin, Diane ; Feneley, Michael P. ; Martinac, Boris ; Friedrich, Oliver</creator><creatorcontrib>Guo, Yang ; Merten, Anna-Lena ; Schöler, Ulrike ; Yu, Ze-Yan ; Cvetkovska, Jasmina ; Fatkin, Diane ; Feneley, Michael P. ; Martinac, Boris ; Friedrich, Oliver</creatorcontrib><description>The transformation of electrical signals into mechanical action of the heart underlying blood circulation results in mechanical stimuli during active contraction or passive filling distention, which conversely modulate electrical signals. This feedback mechanism is known as cardiac mechano-electric coupling (MEC). The cardiac MEC involves complex activation of mechanical biosensors initiating short-term and long-term effects through Ca2+ signals in cardiomyocytes in acute and chronic pressure overload scenarios (e.g. cardiac hypertrophy). Although it is largely still unknown how mechanical forces alter cardiac function at the molecular level, mechanosensitive channels, including the recently discovered family of Piezo channels, have been thought to play a major role in the cardiac MEC and are also suspected to contribute to development of cardiac hypertrophy and heart failure. The earliest reports of mechanosensitive channel activity recognized that their gating could be controlled by membrane stretch. In this article, we provide an overview of the stretch devices, which have been employed for studies of the effects of mechanical stimuli on muscle and heart cells. We also describe novel experiments examining the activity of Piezo1 channels under multiaxial stretch applied using polydimethylsiloxane (PDMS) stretch chambers and IsoStretcher technology to achieve isotropic stretching stimulation to cultured HL-1 cardiac muscle cells which express an appreciable amount of Piezo1.</description><identifier>ISSN: 0079-6107</identifier><identifier>EISSN: 1873-1732</identifier><identifier>DOI: 10.1016/j.pbiomolbio.2020.07.003</identifier><identifier>PMID: 32763257</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Biosensing Techniques - instrumentation ; Biosensing Techniques - methods ; Calcium - metabolism ; Cell Line ; Cell stretching device ; Cells, Cultured ; Dimethylpolysiloxanes - metabolism ; HL-1 ; Humans ; Ion Channels - metabolism ; Male ; Mechanosensitive ion channel ; Mechanotransduction ; Mechanotransduction, Cellular - physiology ; Mice ; Mice, Inbred C57BL ; Models, Biological ; Myocardium - cytology ; Myocardium - metabolism ; Myocytes, Cardiac - metabolism ; Piezo1 ; Polydimethylsiloxane (PDMS) ; Stress, Mechanical</subject><ispartof>Progress in biophysics and molecular biology, 2021-01, Vol.159, p.22-33</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright © 2020 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-9329cdef0130f34c522b90b5f69f9c98ff9e3a506b85b6d5fee4490cf369dda73</citedby><cites>FETCH-LOGICAL-c374t-9329cdef0130f34c522b90b5f69f9c98ff9e3a506b85b6d5fee4490cf369dda73</cites><orcidid>0000-0001-8422-7082 ; 0000-0001-6588-0684 ; 0000-0001-5374-1492 ; 0000-0002-6650-8865 ; 0000-0003-2238-2049</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0079610720300675$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32763257$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Yang</creatorcontrib><creatorcontrib>Merten, Anna-Lena</creatorcontrib><creatorcontrib>Schöler, Ulrike</creatorcontrib><creatorcontrib>Yu, Ze-Yan</creatorcontrib><creatorcontrib>Cvetkovska, Jasmina</creatorcontrib><creatorcontrib>Fatkin, Diane</creatorcontrib><creatorcontrib>Feneley, Michael P.</creatorcontrib><creatorcontrib>Martinac, Boris</creatorcontrib><creatorcontrib>Friedrich, Oliver</creatorcontrib><title>In vitro cell stretching technology (IsoStretcher) as an approach to unravel Piezo1-mediated cardiac mechanotransduction</title><title>Progress in biophysics and molecular biology</title><addtitle>Prog Biophys Mol Biol</addtitle><description>The transformation of electrical signals into mechanical action of the heart underlying blood circulation results in mechanical stimuli during active contraction or passive filling distention, which conversely modulate electrical signals. This feedback mechanism is known as cardiac mechano-electric coupling (MEC). The cardiac MEC involves complex activation of mechanical biosensors initiating short-term and long-term effects through Ca2+ signals in cardiomyocytes in acute and chronic pressure overload scenarios (e.g. cardiac hypertrophy). Although it is largely still unknown how mechanical forces alter cardiac function at the molecular level, mechanosensitive channels, including the recently discovered family of Piezo channels, have been thought to play a major role in the cardiac MEC and are also suspected to contribute to development of cardiac hypertrophy and heart failure. The earliest reports of mechanosensitive channel activity recognized that their gating could be controlled by membrane stretch. In this article, we provide an overview of the stretch devices, which have been employed for studies of the effects of mechanical stimuli on muscle and heart cells. We also describe novel experiments examining the activity of Piezo1 channels under multiaxial stretch applied using polydimethylsiloxane (PDMS) stretch chambers and IsoStretcher technology to achieve isotropic stretching stimulation to cultured HL-1 cardiac muscle cells which express an appreciable amount of Piezo1.</description><subject>Animals</subject><subject>Biosensing Techniques - instrumentation</subject><subject>Biosensing Techniques - methods</subject><subject>Calcium - metabolism</subject><subject>Cell Line</subject><subject>Cell stretching device</subject><subject>Cells, Cultured</subject><subject>Dimethylpolysiloxanes - metabolism</subject><subject>HL-1</subject><subject>Humans</subject><subject>Ion Channels - metabolism</subject><subject>Male</subject><subject>Mechanosensitive ion channel</subject><subject>Mechanotransduction</subject><subject>Mechanotransduction, Cellular - physiology</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Models, Biological</subject><subject>Myocardium - cytology</subject><subject>Myocardium - metabolism</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>Piezo1</subject><subject>Polydimethylsiloxane (PDMS)</subject><subject>Stress, Mechanical</subject><issn>0079-6107</issn><issn>1873-1732</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkEuO1DAQhi0EYpqBKyAvh0VC2U7iZAkjHi2NBBKwthynPO1WYje201JzGs7CyXCrB1iyqSqp_nr8HyGUQc2Ada_39WF0YQlziTUHDjXIGkA8IhvWS1ExKfhjsgGQQ9UxkFfkWUp7AOBMdk_JleCyE7yVG3La-l8_jy7HQA3OM005YjY75-9pRrPzYQ73J3qzTeHLpYPxFdWJak_14RCDNjuaA1191Eec6WeHPwKrFpyczjhRo2OpDF3KLu1DjtqnaTXZBf-cPLF6TvjiIV-Tb-_ffb39WN19-rC9fXNXGSGbXA2CD2ZCC0yAFY1pOR8HGFvbDXYwQ2_tgEK30I19O3ZTaxGbZgBjRTdMk5bimtxc9pZvv6-YslpcOnvVHsOaFG8E61kn-6ZI-4vUxJBSRKsO0S06nhQDdQav9uofeHUGr0CqAr6Mvny4so7F_d_BP6SL4O1FgMXr0WFUyTj0ppCKaLKagvv_ld8wkJ0t</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Guo, Yang</creator><creator>Merten, Anna-Lena</creator><creator>Schöler, Ulrike</creator><creator>Yu, Ze-Yan</creator><creator>Cvetkovska, Jasmina</creator><creator>Fatkin, Diane</creator><creator>Feneley, Michael P.</creator><creator>Martinac, Boris</creator><creator>Friedrich, Oliver</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8422-7082</orcidid><orcidid>https://orcid.org/0000-0001-6588-0684</orcidid><orcidid>https://orcid.org/0000-0001-5374-1492</orcidid><orcidid>https://orcid.org/0000-0002-6650-8865</orcidid><orcidid>https://orcid.org/0000-0003-2238-2049</orcidid></search><sort><creationdate>202101</creationdate><title>In vitro cell stretching technology (IsoStretcher) as an approach to unravel Piezo1-mediated cardiac mechanotransduction</title><author>Guo, Yang ; Merten, Anna-Lena ; Schöler, Ulrike ; Yu, Ze-Yan ; Cvetkovska, Jasmina ; Fatkin, Diane ; Feneley, Michael P. ; Martinac, Boris ; Friedrich, Oliver</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-9329cdef0130f34c522b90b5f69f9c98ff9e3a506b85b6d5fee4490cf369dda73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Biosensing Techniques - instrumentation</topic><topic>Biosensing Techniques - methods</topic><topic>Calcium - metabolism</topic><topic>Cell Line</topic><topic>Cell stretching device</topic><topic>Cells, Cultured</topic><topic>Dimethylpolysiloxanes - metabolism</topic><topic>HL-1</topic><topic>Humans</topic><topic>Ion Channels - metabolism</topic><topic>Male</topic><topic>Mechanosensitive ion channel</topic><topic>Mechanotransduction</topic><topic>Mechanotransduction, Cellular - physiology</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Models, Biological</topic><topic>Myocardium - cytology</topic><topic>Myocardium - metabolism</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>Piezo1</topic><topic>Polydimethylsiloxane (PDMS)</topic><topic>Stress, Mechanical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Yang</creatorcontrib><creatorcontrib>Merten, Anna-Lena</creatorcontrib><creatorcontrib>Schöler, Ulrike</creatorcontrib><creatorcontrib>Yu, Ze-Yan</creatorcontrib><creatorcontrib>Cvetkovska, Jasmina</creatorcontrib><creatorcontrib>Fatkin, Diane</creatorcontrib><creatorcontrib>Feneley, Michael P.</creatorcontrib><creatorcontrib>Martinac, Boris</creatorcontrib><creatorcontrib>Friedrich, Oliver</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Progress in biophysics and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Yang</au><au>Merten, Anna-Lena</au><au>Schöler, Ulrike</au><au>Yu, Ze-Yan</au><au>Cvetkovska, Jasmina</au><au>Fatkin, Diane</au><au>Feneley, Michael P.</au><au>Martinac, Boris</au><au>Friedrich, Oliver</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vitro cell stretching technology (IsoStretcher) as an approach to unravel Piezo1-mediated cardiac mechanotransduction</atitle><jtitle>Progress in biophysics and molecular biology</jtitle><addtitle>Prog Biophys Mol Biol</addtitle><date>2021-01</date><risdate>2021</risdate><volume>159</volume><spage>22</spage><epage>33</epage><pages>22-33</pages><issn>0079-6107</issn><eissn>1873-1732</eissn><abstract>The transformation of electrical signals into mechanical action of the heart underlying blood circulation results in mechanical stimuli during active contraction or passive filling distention, which conversely modulate electrical signals. This feedback mechanism is known as cardiac mechano-electric coupling (MEC). The cardiac MEC involves complex activation of mechanical biosensors initiating short-term and long-term effects through Ca2+ signals in cardiomyocytes in acute and chronic pressure overload scenarios (e.g. cardiac hypertrophy). Although it is largely still unknown how mechanical forces alter cardiac function at the molecular level, mechanosensitive channels, including the recently discovered family of Piezo channels, have been thought to play a major role in the cardiac MEC and are also suspected to contribute to development of cardiac hypertrophy and heart failure. The earliest reports of mechanosensitive channel activity recognized that their gating could be controlled by membrane stretch. In this article, we provide an overview of the stretch devices, which have been employed for studies of the effects of mechanical stimuli on muscle and heart cells. We also describe novel experiments examining the activity of Piezo1 channels under multiaxial stretch applied using polydimethylsiloxane (PDMS) stretch chambers and IsoStretcher technology to achieve isotropic stretching stimulation to cultured HL-1 cardiac muscle cells which express an appreciable amount of Piezo1.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>32763257</pmid><doi>10.1016/j.pbiomolbio.2020.07.003</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8422-7082</orcidid><orcidid>https://orcid.org/0000-0001-6588-0684</orcidid><orcidid>https://orcid.org/0000-0001-5374-1492</orcidid><orcidid>https://orcid.org/0000-0002-6650-8865</orcidid><orcidid>https://orcid.org/0000-0003-2238-2049</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0079-6107
ispartof Progress in biophysics and molecular biology, 2021-01, Vol.159, p.22-33
issn 0079-6107
1873-1732
language eng
recordid cdi_proquest_miscellaneous_2431816784
source MEDLINE; Elsevier ScienceDirect Journals
subjects Animals
Biosensing Techniques - instrumentation
Biosensing Techniques - methods
Calcium - metabolism
Cell Line
Cell stretching device
Cells, Cultured
Dimethylpolysiloxanes - metabolism
HL-1
Humans
Ion Channels - metabolism
Male
Mechanosensitive ion channel
Mechanotransduction
Mechanotransduction, Cellular - physiology
Mice
Mice, Inbred C57BL
Models, Biological
Myocardium - cytology
Myocardium - metabolism
Myocytes, Cardiac - metabolism
Piezo1
Polydimethylsiloxane (PDMS)
Stress, Mechanical
title In vitro cell stretching technology (IsoStretcher) as an approach to unravel Piezo1-mediated cardiac mechanotransduction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T02%3A25%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%C2%A0vitro%20cell%20stretching%20technology%20(IsoStretcher)%20as%20an%20approach%20to%20unravel%20Piezo1-mediated%20cardiac%20mechanotransduction&rft.jtitle=Progress%20in%20biophysics%20and%20molecular%20biology&rft.au=Guo,%20Yang&rft.date=2021-01&rft.volume=159&rft.spage=22&rft.epage=33&rft.pages=22-33&rft.issn=0079-6107&rft.eissn=1873-1732&rft_id=info:doi/10.1016/j.pbiomolbio.2020.07.003&rft_dat=%3Cproquest_cross%3E2431816784%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2431816784&rft_id=info:pmid/32763257&rft_els_id=S0079610720300675&rfr_iscdi=true