The role of bulk pinning in the Clem valley in hysteresis losses in type II superconductors

Measurements of hysteresis losses W(h0, Hb) at several fixed amplitudes h0 versus a static bias magnetic field Hb collinear to h0 and directed along the length or the width of a VTi ribbon which exhibits significant magnetic anisotropy, are reported and are very well reproduced exploiting bulk pinni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:J. Appl. Phys.; (United States) 1986-05, Vol.59 (9), p.3208-3223
Hauptverfasser: LEBLANC, M. A. R, FILLION, G, LORRAIN, J. P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3223
container_issue 9
container_start_page 3208
container_title J. Appl. Phys.; (United States)
container_volume 59
creator LEBLANC, M. A. R
FILLION, G
LORRAIN, J. P
description Measurements of hysteresis losses W(h0, Hb) at several fixed amplitudes h0 versus a static bias magnetic field Hb collinear to h0 and directed along the length or the width of a VTi ribbon which exhibits significant magnetic anisotropy, are reported and are very well reproduced exploiting bulk pinning alone hence neglecting equilibrium diamagnetism and surface barriers. Families of curves of D≡W(h0, Hb)/W(h0,0) vs z≡Hb/h0 at various fixed h0 were calculated for planar and cylindrical geometry, neglecting surface steps, using the simple formulas μ0 jc=dB/dx=α/B, α/B0.5, α/B0.1, α[1−(B/Bc2)], and α/(B+Δ) for the bulk critical current density. For slab geometry and the first four functions listed, the curves of D vs z are independent of h0/H* when h0
doi_str_mv 10.1063/1.337022
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_24316110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>24316110</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-7f8ef19366cc8bd9a3dee7067bf1a0cb164778cf7f7f8a994d9d3aa46c52f4113</originalsourceid><addsrcrecordid>eNqF0U2LFDEQBuAgCo6r4E8IIuKl16pOT9I5yuDHwIKX9eQhZNIVJ5rpblPdwvx7s86y1yWHguShqHojxGuEawStPuC1Ugba9onYIPS2MdstPBUbgBab3hr7XLxg_gWA2Cu7ET9ujyTLlElOUR7W_FvOaRzT-FOmUS71bZfpJP_6nOl8d3U880KFOLHMEzPxf3eeSe73kteZSpjGYQ3LVPileBZ9Znp1X6_E98-fbndfm5tvX_a7jzdNUGa7NCb2FNEqrUPoD4P1aiAyoM0hoodwQN0Z04do6um9td1gB-V9p8O2jR2iuhJvLn0nXpLjkBYKxzrGSGFxumZhTFvRuwuay_RnJV7cKXGgnP1I08qu7RRqRKjw_QWGUhcsFN1c0smXs0NwdxE7dJeIK31739Nz8DkWP4bED75HMAbgUQa2_otW_wCYi4bu</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>24316110</pqid></control><display><type>article</type><title>The role of bulk pinning in the Clem valley in hysteresis losses in type II superconductors</title><source>AIP Digital Archive</source><creator>LEBLANC, M. A. R ; FILLION, G ; LORRAIN, J. P</creator><creatorcontrib>LEBLANC, M. A. R ; FILLION, G ; LORRAIN, J. P ; Physics Department, University of Ottawa, Ottawa, Canada K1N 6N5</creatorcontrib><description>Measurements of hysteresis losses W(h0, Hb) at several fixed amplitudes h0 versus a static bias magnetic field Hb collinear to h0 and directed along the length or the width of a VTi ribbon which exhibits significant magnetic anisotropy, are reported and are very well reproduced exploiting bulk pinning alone hence neglecting equilibrium diamagnetism and surface barriers. Families of curves of D≡W(h0, Hb)/W(h0,0) vs z≡Hb/h0 at various fixed h0 were calculated for planar and cylindrical geometry, neglecting surface steps, using the simple formulas μ0 jc=dB/dx=α/B, α/B0.5, α/B0.1, α[1−(B/Bc2)], and α/(B+Δ) for the bulk critical current density. For slab geometry and the first four functions listed, the curves of D vs z are independent of h0/H* when h0&lt;H* (the first full penetration field) and z&lt;zd with zd dependent on h0/H*. This decoupling of D from h0 occurs when xp, the maximum penetration of the flux disturbance during the cycle of the applied field, does not reach the midplane X. Closed form expressions for W(h0, Hb) developed for slab geometry using dB/dx=α/B confirm this by showing that under these circumstances h0 factors out of the formulas for D. Pursuing the condition xp=X, analytic expressions linking zd and h0/H* are obtained. Graphs of zmin, the locus of the valley minimum and of Dmin, the ratio of Wmin, the losses at the valley minimum to that at Hb=0 are presented. The edge of plateaus displayed by such graphs is determined by letting zmin=zd in the formulas for zd(h0/H*).</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.337022</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Woodbury, NY: American Institute of Physics</publisher><subject>360104 - Metals &amp; Alloys- Physical Properties ; 656102 - Solid State Physics- Superconductivity- Acoustic, Electronic, Magnetic, Optical, &amp; Thermal Phenomena- (-1987) ; ALLOYS ; Applied sciences ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; HYSTERESIS ; LOSSES ; MAGNETIC FLUX ; MATERIALS SCIENCE ; Metals, alloys and compounds (a15, 001c15, laves phases, chevrel phases, borocarbides, etc.) ; Metals, semimetals and alloys ; Other techniques and industries ; PENETRATION DEPTH ; Physics ; Properties of type I and type II superconductors ; Specific materials ; Superconducting materials (excluding high-tc compounds) ; Superconductivity ; SUPERCONDUCTORS ; TITANIUM ALLOYS ; TYPE-II SUPERCONDUCTORS ; VANADIUM ALLOYS</subject><ispartof>J. Appl. Phys.; (United States), 1986-05, Vol.59 (9), p.3208-3223</ispartof><rights>1987 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-7f8ef19366cc8bd9a3dee7067bf1a0cb164778cf7f7f8a994d9d3aa46c52f4113</citedby><cites>FETCH-LOGICAL-c375t-7f8ef19366cc8bd9a3dee7067bf1a0cb164778cf7f7f8a994d9d3aa46c52f4113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8099796$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8107700$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6022772$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>LEBLANC, M. A. R</creatorcontrib><creatorcontrib>FILLION, G</creatorcontrib><creatorcontrib>LORRAIN, J. P</creatorcontrib><creatorcontrib>Physics Department, University of Ottawa, Ottawa, Canada K1N 6N5</creatorcontrib><title>The role of bulk pinning in the Clem valley in hysteresis losses in type II superconductors</title><title>J. Appl. Phys.; (United States)</title><description>Measurements of hysteresis losses W(h0, Hb) at several fixed amplitudes h0 versus a static bias magnetic field Hb collinear to h0 and directed along the length or the width of a VTi ribbon which exhibits significant magnetic anisotropy, are reported and are very well reproduced exploiting bulk pinning alone hence neglecting equilibrium diamagnetism and surface barriers. Families of curves of D≡W(h0, Hb)/W(h0,0) vs z≡Hb/h0 at various fixed h0 were calculated for planar and cylindrical geometry, neglecting surface steps, using the simple formulas μ0 jc=dB/dx=α/B, α/B0.5, α/B0.1, α[1−(B/Bc2)], and α/(B+Δ) for the bulk critical current density. For slab geometry and the first four functions listed, the curves of D vs z are independent of h0/H* when h0&lt;H* (the first full penetration field) and z&lt;zd with zd dependent on h0/H*. This decoupling of D from h0 occurs when xp, the maximum penetration of the flux disturbance during the cycle of the applied field, does not reach the midplane X. Closed form expressions for W(h0, Hb) developed for slab geometry using dB/dx=α/B confirm this by showing that under these circumstances h0 factors out of the formulas for D. Pursuing the condition xp=X, analytic expressions linking zd and h0/H* are obtained. Graphs of zmin, the locus of the valley minimum and of Dmin, the ratio of Wmin, the losses at the valley minimum to that at Hb=0 are presented. The edge of plateaus displayed by such graphs is determined by letting zmin=zd in the formulas for zd(h0/H*).</description><subject>360104 - Metals &amp; Alloys- Physical Properties</subject><subject>656102 - Solid State Physics- Superconductivity- Acoustic, Electronic, Magnetic, Optical, &amp; Thermal Phenomena- (-1987)</subject><subject>ALLOYS</subject><subject>Applied sciences</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>HYSTERESIS</subject><subject>LOSSES</subject><subject>MAGNETIC FLUX</subject><subject>MATERIALS SCIENCE</subject><subject>Metals, alloys and compounds (a15, 001c15, laves phases, chevrel phases, borocarbides, etc.)</subject><subject>Metals, semimetals and alloys</subject><subject>Other techniques and industries</subject><subject>PENETRATION DEPTH</subject><subject>Physics</subject><subject>Properties of type I and type II superconductors</subject><subject>Specific materials</subject><subject>Superconducting materials (excluding high-tc compounds)</subject><subject>Superconductivity</subject><subject>SUPERCONDUCTORS</subject><subject>TITANIUM ALLOYS</subject><subject>TYPE-II SUPERCONDUCTORS</subject><subject>VANADIUM ALLOYS</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><recordid>eNqF0U2LFDEQBuAgCo6r4E8IIuKl16pOT9I5yuDHwIKX9eQhZNIVJ5rpblPdwvx7s86y1yWHguShqHojxGuEawStPuC1Ugba9onYIPS2MdstPBUbgBab3hr7XLxg_gWA2Cu7ET9ujyTLlElOUR7W_FvOaRzT-FOmUS71bZfpJP_6nOl8d3U880KFOLHMEzPxf3eeSe73kteZSpjGYQ3LVPileBZ9Znp1X6_E98-fbndfm5tvX_a7jzdNUGa7NCb2FNEqrUPoD4P1aiAyoM0hoodwQN0Z04do6um9td1gB-V9p8O2jR2iuhJvLn0nXpLjkBYKxzrGSGFxumZhTFvRuwuay_RnJV7cKXGgnP1I08qu7RRqRKjw_QWGUhcsFN1c0smXs0NwdxE7dJeIK31739Nz8DkWP4bED75HMAbgUQa2_otW_wCYi4bu</recordid><startdate>19860501</startdate><enddate>19860501</enddate><creator>LEBLANC, M. A. R</creator><creator>FILLION, G</creator><creator>LORRAIN, J. P</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>19860501</creationdate><title>The role of bulk pinning in the Clem valley in hysteresis losses in type II superconductors</title><author>LEBLANC, M. A. R ; FILLION, G ; LORRAIN, J. P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-7f8ef19366cc8bd9a3dee7067bf1a0cb164778cf7f7f8a994d9d3aa46c52f4113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>360104 - Metals &amp; Alloys- Physical Properties</topic><topic>656102 - Solid State Physics- Superconductivity- Acoustic, Electronic, Magnetic, Optical, &amp; Thermal Phenomena- (-1987)</topic><topic>ALLOYS</topic><topic>Applied sciences</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>HYSTERESIS</topic><topic>LOSSES</topic><topic>MAGNETIC FLUX</topic><topic>MATERIALS SCIENCE</topic><topic>Metals, alloys and compounds (a15, 001c15, laves phases, chevrel phases, borocarbides, etc.)</topic><topic>Metals, semimetals and alloys</topic><topic>Other techniques and industries</topic><topic>PENETRATION DEPTH</topic><topic>Physics</topic><topic>Properties of type I and type II superconductors</topic><topic>Specific materials</topic><topic>Superconducting materials (excluding high-tc compounds)</topic><topic>Superconductivity</topic><topic>SUPERCONDUCTORS</topic><topic>TITANIUM ALLOYS</topic><topic>TYPE-II SUPERCONDUCTORS</topic><topic>VANADIUM ALLOYS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LEBLANC, M. A. R</creatorcontrib><creatorcontrib>FILLION, G</creatorcontrib><creatorcontrib>LORRAIN, J. P</creatorcontrib><creatorcontrib>Physics Department, University of Ottawa, Ottawa, Canada K1N 6N5</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>J. Appl. Phys.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LEBLANC, M. A. R</au><au>FILLION, G</au><au>LORRAIN, J. P</au><aucorp>Physics Department, University of Ottawa, Ottawa, Canada K1N 6N5</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The role of bulk pinning in the Clem valley in hysteresis losses in type II superconductors</atitle><jtitle>J. Appl. Phys.; (United States)</jtitle><date>1986-05-01</date><risdate>1986</risdate><volume>59</volume><issue>9</issue><spage>3208</spage><epage>3223</epage><pages>3208-3223</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Measurements of hysteresis losses W(h0, Hb) at several fixed amplitudes h0 versus a static bias magnetic field Hb collinear to h0 and directed along the length or the width of a VTi ribbon which exhibits significant magnetic anisotropy, are reported and are very well reproduced exploiting bulk pinning alone hence neglecting equilibrium diamagnetism and surface barriers. Families of curves of D≡W(h0, Hb)/W(h0,0) vs z≡Hb/h0 at various fixed h0 were calculated for planar and cylindrical geometry, neglecting surface steps, using the simple formulas μ0 jc=dB/dx=α/B, α/B0.5, α/B0.1, α[1−(B/Bc2)], and α/(B+Δ) for the bulk critical current density. For slab geometry and the first four functions listed, the curves of D vs z are independent of h0/H* when h0&lt;H* (the first full penetration field) and z&lt;zd with zd dependent on h0/H*. This decoupling of D from h0 occurs when xp, the maximum penetration of the flux disturbance during the cycle of the applied field, does not reach the midplane X. Closed form expressions for W(h0, Hb) developed for slab geometry using dB/dx=α/B confirm this by showing that under these circumstances h0 factors out of the formulas for D. Pursuing the condition xp=X, analytic expressions linking zd and h0/H* are obtained. Graphs of zmin, the locus of the valley minimum and of Dmin, the ratio of Wmin, the losses at the valley minimum to that at Hb=0 are presented. The edge of plateaus displayed by such graphs is determined by letting zmin=zd in the formulas for zd(h0/H*).</abstract><cop>Woodbury, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.337022</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof J. Appl. Phys.; (United States), 1986-05, Vol.59 (9), p.3208-3223
issn 0021-8979
1089-7550
language eng
recordid cdi_proquest_miscellaneous_24316110
source AIP Digital Archive
subjects 360104 - Metals & Alloys- Physical Properties
656102 - Solid State Physics- Superconductivity- Acoustic, Electronic, Magnetic, Optical, & Thermal Phenomena- (-1987)
ALLOYS
Applied sciences
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
HYSTERESIS
LOSSES
MAGNETIC FLUX
MATERIALS SCIENCE
Metals, alloys and compounds (a15, 001c15, laves phases, chevrel phases, borocarbides, etc.)
Metals, semimetals and alloys
Other techniques and industries
PENETRATION DEPTH
Physics
Properties of type I and type II superconductors
Specific materials
Superconducting materials (excluding high-tc compounds)
Superconductivity
SUPERCONDUCTORS
TITANIUM ALLOYS
TYPE-II SUPERCONDUCTORS
VANADIUM ALLOYS
title The role of bulk pinning in the Clem valley in hysteresis losses in type II superconductors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A30%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20role%20of%20bulk%20pinning%20in%20the%20Clem%20valley%20in%20hysteresis%20losses%20in%20type%20II%20superconductors&rft.jtitle=J.%20Appl.%20Phys.;%20(United%20States)&rft.au=LEBLANC,%20M.%20A.%20R&rft.aucorp=Physics%20Department,%20University%20of%20Ottawa,%20Ottawa,%20Canada%20K1N%206N5&rft.date=1986-05-01&rft.volume=59&rft.issue=9&rft.spage=3208&rft.epage=3223&rft.pages=3208-3223&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.337022&rft_dat=%3Cproquest_osti_%3E24316110%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=24316110&rft_id=info:pmid/&rfr_iscdi=true