Recognizing Non-Collaborative Radio Station Communication Behaviors Using an Ameliorated LeNet

This work improves a LeNet model algorithm based on a signal’s bispectral features to recognize the communication behaviors of a non-collaborative short-wave radio station. At first, the mapping relationships between the burst waveforms and the communication behaviors of a radio station are analyzed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2020-08, Vol.20 (15), p.4320
Hauptverfasser: Wu, Zilong, Chen, Hong, Lei, Yingke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 15
container_start_page 4320
container_title Sensors (Basel, Switzerland)
container_volume 20
creator Wu, Zilong
Chen, Hong
Lei, Yingke
description This work improves a LeNet model algorithm based on a signal’s bispectral features to recognize the communication behaviors of a non-collaborative short-wave radio station. At first, the mapping relationships between the burst waveforms and the communication behaviors of a radio station are analyzed. Then, bispectral features of simulated behavior signals are obtained as the input of the network. With regard to the recognition neural network, the structure of LeNet and the size of the convolutional kernel in LeNet are optimized. Finally, the five types of communication behavior are recognized by using the improved bispectral estimation matrix of signals and the ameliorated LeNet. The experimental results show that when the signal-to-noise ratio (SNR) values are 8, 10, or 15 dB, the recognition accuracy values of the improved algorithm reach 81.5%, 94.5%, and 99.3%, respectively. Compared with other algorithms, the training time cost and recognition accuracy of the proposed algorithm are lower and higher, respectively; thus, the proposed algorithm is of great practical value.
doi_str_mv 10.3390/s20154320
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_miscellaneous_2430980567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a16c7060322541148038736d24530eff</doaj_id><sourcerecordid>2431157626</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-19c4da22bff41061c75fd2e80cf3c30a20a8cf36e2a4ccd0a5636c253e570faf3</originalsourceid><addsrcrecordid>eNpdkk1v1DAQQCMEoqVw4B9E4gKHwNhjO9kLUlnxUWlVpEKvWF5nvPUqsYudrAS_HoetKsrJM-M3T6PRVNVLBm8RV_Auc2BSIIdH1SkTXDQd5_D4n_ikepbzHoAjYve0OkHeSoUrcVr9uCIbd8H_9mFXX8bQrOMwmG1MZvIHqq9M72P9bSpZDPU6juMcvD1mH-jGHHxMub7OS7cJ9flIg196qa83dEnT8-qJM0OmF3fvWXX96eP39Zdm8_Xzxfp801gh1NSwlRW94XzrnGCgmG2l6zl1YB1aBMPBdCVUxI2wtgdTpleWSyTZgjMOz6qLo7ePZq9vkx9N-qWj8fpvIaadNmnydiBtmLItKEDOpWBMdIBdi6rnQiKQW1zvj67beTtSbylMyQwPpA9_gr_Ru3jQrUCpWiiC13eCFH_OlCc9-myp7DVQnLPmAmHVQWEL-uo_dB_nFMqqFoox2SquCvXmSNkUc07k7odhoJcL0PcXgH8AbHqg9Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2431157626</pqid></control><display><type>article</type><title>Recognizing Non-Collaborative Radio Station Communication Behaviors Using an Ameliorated LeNet</title><source>DOAJ Directory of Open Access Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Wu, Zilong ; Chen, Hong ; Lei, Yingke</creator><creatorcontrib>Wu, Zilong ; Chen, Hong ; Lei, Yingke</creatorcontrib><description>This work improves a LeNet model algorithm based on a signal’s bispectral features to recognize the communication behaviors of a non-collaborative short-wave radio station. At first, the mapping relationships between the burst waveforms and the communication behaviors of a radio station are analyzed. Then, bispectral features of simulated behavior signals are obtained as the input of the network. With regard to the recognition neural network, the structure of LeNet and the size of the convolutional kernel in LeNet are optimized. Finally, the five types of communication behavior are recognized by using the improved bispectral estimation matrix of signals and the ameliorated LeNet. The experimental results show that when the signal-to-noise ratio (SNR) values are 8, 10, or 15 dB, the recognition accuracy values of the improved algorithm reach 81.5%, 94.5%, and 99.3%, respectively. Compared with other algorithms, the training time cost and recognition accuracy of the proposed algorithm are lower and higher, respectively; thus, the proposed algorithm is of great practical value.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s20154320</identifier><identifier>PMID: 32756394</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Armed forces ; Behavior ; bispectrum estimation ; Collaboration ; communication behaviors ; Computer simulation ; convolutional neural network (CNN) ; Fault diagnosis ; Feature recognition ; Image retrieval ; Mapping ; Methods ; Neural networks ; Noise levels ; Radio stations ; Sensors ; Short wave radio transmission ; short-wave radio station ; signal recognition ; Signal to noise ratio ; Verbal communication ; Waveforms</subject><ispartof>Sensors (Basel, Switzerland), 2020-08, Vol.20 (15), p.4320</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-19c4da22bff41061c75fd2e80cf3c30a20a8cf36e2a4ccd0a5636c253e570faf3</citedby><cites>FETCH-LOGICAL-c446t-19c4da22bff41061c75fd2e80cf3c30a20a8cf36e2a4ccd0a5636c253e570faf3</cites><orcidid>0000-0002-2931-5925</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7435670/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7435670/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Wu, Zilong</creatorcontrib><creatorcontrib>Chen, Hong</creatorcontrib><creatorcontrib>Lei, Yingke</creatorcontrib><title>Recognizing Non-Collaborative Radio Station Communication Behaviors Using an Ameliorated LeNet</title><title>Sensors (Basel, Switzerland)</title><description>This work improves a LeNet model algorithm based on a signal’s bispectral features to recognize the communication behaviors of a non-collaborative short-wave radio station. At first, the mapping relationships between the burst waveforms and the communication behaviors of a radio station are analyzed. Then, bispectral features of simulated behavior signals are obtained as the input of the network. With regard to the recognition neural network, the structure of LeNet and the size of the convolutional kernel in LeNet are optimized. Finally, the five types of communication behavior are recognized by using the improved bispectral estimation matrix of signals and the ameliorated LeNet. The experimental results show that when the signal-to-noise ratio (SNR) values are 8, 10, or 15 dB, the recognition accuracy values of the improved algorithm reach 81.5%, 94.5%, and 99.3%, respectively. Compared with other algorithms, the training time cost and recognition accuracy of the proposed algorithm are lower and higher, respectively; thus, the proposed algorithm is of great practical value.</description><subject>Algorithms</subject><subject>Armed forces</subject><subject>Behavior</subject><subject>bispectrum estimation</subject><subject>Collaboration</subject><subject>communication behaviors</subject><subject>Computer simulation</subject><subject>convolutional neural network (CNN)</subject><subject>Fault diagnosis</subject><subject>Feature recognition</subject><subject>Image retrieval</subject><subject>Mapping</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Noise levels</subject><subject>Radio stations</subject><subject>Sensors</subject><subject>Short wave radio transmission</subject><subject>short-wave radio station</subject><subject>signal recognition</subject><subject>Signal to noise ratio</subject><subject>Verbal communication</subject><subject>Waveforms</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk1v1DAQQCMEoqVw4B9E4gKHwNhjO9kLUlnxUWlVpEKvWF5nvPUqsYudrAS_HoetKsrJM-M3T6PRVNVLBm8RV_Auc2BSIIdH1SkTXDQd5_D4n_ikepbzHoAjYve0OkHeSoUrcVr9uCIbd8H_9mFXX8bQrOMwmG1MZvIHqq9M72P9bSpZDPU6juMcvD1mH-jGHHxMub7OS7cJ9flIg196qa83dEnT8-qJM0OmF3fvWXX96eP39Zdm8_Xzxfp801gh1NSwlRW94XzrnGCgmG2l6zl1YB1aBMPBdCVUxI2wtgdTpleWSyTZgjMOz6qLo7ePZq9vkx9N-qWj8fpvIaadNmnydiBtmLItKEDOpWBMdIBdi6rnQiKQW1zvj67beTtSbylMyQwPpA9_gr_Ru3jQrUCpWiiC13eCFH_OlCc9-myp7DVQnLPmAmHVQWEL-uo_dB_nFMqqFoox2SquCvXmSNkUc07k7odhoJcL0PcXgH8AbHqg9Q</recordid><startdate>20200803</startdate><enddate>20200803</enddate><creator>Wu, Zilong</creator><creator>Chen, Hong</creator><creator>Lei, Yingke</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2931-5925</orcidid></search><sort><creationdate>20200803</creationdate><title>Recognizing Non-Collaborative Radio Station Communication Behaviors Using an Ameliorated LeNet</title><author>Wu, Zilong ; Chen, Hong ; Lei, Yingke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-19c4da22bff41061c75fd2e80cf3c30a20a8cf36e2a4ccd0a5636c253e570faf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Armed forces</topic><topic>Behavior</topic><topic>bispectrum estimation</topic><topic>Collaboration</topic><topic>communication behaviors</topic><topic>Computer simulation</topic><topic>convolutional neural network (CNN)</topic><topic>Fault diagnosis</topic><topic>Feature recognition</topic><topic>Image retrieval</topic><topic>Mapping</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Noise levels</topic><topic>Radio stations</topic><topic>Sensors</topic><topic>Short wave radio transmission</topic><topic>short-wave radio station</topic><topic>signal recognition</topic><topic>Signal to noise ratio</topic><topic>Verbal communication</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Zilong</creatorcontrib><creatorcontrib>Chen, Hong</creatorcontrib><creatorcontrib>Lei, Yingke</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Zilong</au><au>Chen, Hong</au><au>Lei, Yingke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recognizing Non-Collaborative Radio Station Communication Behaviors Using an Ameliorated LeNet</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><date>2020-08-03</date><risdate>2020</risdate><volume>20</volume><issue>15</issue><spage>4320</spage><pages>4320-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>This work improves a LeNet model algorithm based on a signal’s bispectral features to recognize the communication behaviors of a non-collaborative short-wave radio station. At first, the mapping relationships between the burst waveforms and the communication behaviors of a radio station are analyzed. Then, bispectral features of simulated behavior signals are obtained as the input of the network. With regard to the recognition neural network, the structure of LeNet and the size of the convolutional kernel in LeNet are optimized. Finally, the five types of communication behavior are recognized by using the improved bispectral estimation matrix of signals and the ameliorated LeNet. The experimental results show that when the signal-to-noise ratio (SNR) values are 8, 10, or 15 dB, the recognition accuracy values of the improved algorithm reach 81.5%, 94.5%, and 99.3%, respectively. Compared with other algorithms, the training time cost and recognition accuracy of the proposed algorithm are lower and higher, respectively; thus, the proposed algorithm is of great practical value.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>32756394</pmid><doi>10.3390/s20154320</doi><orcidid>https://orcid.org/0000-0002-2931-5925</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2020-08, Vol.20 (15), p.4320
issn 1424-8220
1424-8220
language eng
recordid cdi_proquest_miscellaneous_2430980567
source DOAJ Directory of Open Access Journals; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Algorithms
Armed forces
Behavior
bispectrum estimation
Collaboration
communication behaviors
Computer simulation
convolutional neural network (CNN)
Fault diagnosis
Feature recognition
Image retrieval
Mapping
Methods
Neural networks
Noise levels
Radio stations
Sensors
Short wave radio transmission
short-wave radio station
signal recognition
Signal to noise ratio
Verbal communication
Waveforms
title Recognizing Non-Collaborative Radio Station Communication Behaviors Using an Ameliorated LeNet
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T20%3A16%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recognizing%20Non-Collaborative%20Radio%20Station%20Communication%20Behaviors%20Using%20an%20Ameliorated%20LeNet&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Wu,%20Zilong&rft.date=2020-08-03&rft.volume=20&rft.issue=15&rft.spage=4320&rft.pages=4320-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s20154320&rft_dat=%3Cproquest_doaj_%3E2431157626%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2431157626&rft_id=info:pmid/32756394&rft_doaj_id=oai_doaj_org_article_a16c7060322541148038736d24530eff&rfr_iscdi=true