Dioxygen Binding to all 3d, 4d, and 5d Transition Metals from Coupled‐Cluster Theory
Understanding how transition metals bind and activate dioxygen (O2) is limited by experimental and theoretical uncertainties, making accurate quantum mechanical descriptors of interest. Here we report coupled‐cluster CCSD(T) energies with large basis sets and vibrational and relativistic corrections...
Gespeichert in:
Veröffentlicht in: | Chemphyschem 2020-10, Vol.21 (19), p.2173-2186 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2186 |
---|---|
container_issue | 19 |
container_start_page | 2173 |
container_title | Chemphyschem |
container_volume | 21 |
creator | Moltved, Klaus A. Kepp, Kasper P. |
description | Understanding how transition metals bind and activate dioxygen (O2) is limited by experimental and theoretical uncertainties, making accurate quantum mechanical descriptors of interest. Here we report coupled‐cluster CCSD(T) energies with large basis sets and vibrational and relativistic corrections for 160 3d, 4d, and 5d metal‐O2 systems. We define four reaction energies (120 in total for the 30 metals) that quantify O−O activation and reveal linear relationships between metal‐oxygen and O−O binding energies. The CCSD(T) data can be combined with thermochemical cycles to estimate chemisorption and physisorption energies for each metal from metal oxide embedding energies, in good correlation with atomization enthalpies (R2=0.75). Spin‐geometry variations can break the linearities, of interest to circumventing the Sabatier principle. Pt, Pd, Co, and Fe form a distinct group with the weakest O2 binding. R2 up to 0.84 between surface adsorption energies and our energies for MO2 systems indicate relevance also to real catalytic systems.
Transition metal bonding to O2 is of major biological and catalytic importance. We report a complete coupled‐cluster CCSD(T) study of all 3d, 4d, and 5d metals bonding to O2. Our CCSD(T) data should aid DFT benchmarks and give insight into linear energy relations and O−O bond activation upon metal–oxygen bonding. |
doi_str_mv | 10.1002/cphc.202000529 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2430979311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2430979311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4509-b7b7d711eda5bddb5c51d8efb1cb669edac13a6e21163a92ff578355ba52e1903</originalsourceid><addsrcrecordid>eNqF0LtOwzAUBmALgWgprIzIEgsDKb7EcT1CuBSpCIbCGjmx06ZK4mIngmw8As_Ik-CqpUgsDJYt6zu_jn4AjjEaYoTIRbacZ0OCCEKIEbED-jikIuBRiHc375BQ1gMHzi28GSGO90GPEs44DaM-eLkuzHs30zW8KmpV1DPYGCjLElJ1DkN_ZK0gU3BqZe2KpjA1fNCNLB3MralgbNplqdXXx2dctq7RFk7n2tjuEOzlHumjzT0Az7c303gcTB7v7uPLSZCFDIkg5SlXHGOtJEuVSlnGsBrpPMVZGkXCf2eYykgTjCMqBclzxkeUsVQyorFAdADO1rlLa15b7ZqkKlymy1LW2rQuISFFgguKsaenf-jCtLb223kVcs4jQYlXw7XKrHHO6jxZ2qKStkswSlaNJ6vGk23jfuBkE9umlVZb_lOxB2IN3opSd__EJfHTOP4N_wbrAoxO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2447776932</pqid></control><display><type>article</type><title>Dioxygen Binding to all 3d, 4d, and 5d Transition Metals from Coupled‐Cluster Theory</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Moltved, Klaus A. ; Kepp, Kasper P.</creator><creatorcontrib>Moltved, Klaus A. ; Kepp, Kasper P.</creatorcontrib><description>Understanding how transition metals bind and activate dioxygen (O2) is limited by experimental and theoretical uncertainties, making accurate quantum mechanical descriptors of interest. Here we report coupled‐cluster CCSD(T) energies with large basis sets and vibrational and relativistic corrections for 160 3d, 4d, and 5d metal‐O2 systems. We define four reaction energies (120 in total for the 30 metals) that quantify O−O activation and reveal linear relationships between metal‐oxygen and O−O binding energies. The CCSD(T) data can be combined with thermochemical cycles to estimate chemisorption and physisorption energies for each metal from metal oxide embedding energies, in good correlation with atomization enthalpies (R2=0.75). Spin‐geometry variations can break the linearities, of interest to circumventing the Sabatier principle. Pt, Pd, Co, and Fe form a distinct group with the weakest O2 binding. R2 up to 0.84 between surface adsorption energies and our energies for MO2 systems indicate relevance also to real catalytic systems.
Transition metal bonding to O2 is of major biological and catalytic importance. We report a complete coupled‐cluster CCSD(T) study of all 3d, 4d, and 5d metals bonding to O2. Our CCSD(T) data should aid DFT benchmarks and give insight into linear energy relations and O−O bond activation upon metal–oxygen bonding.</description><identifier>ISSN: 1439-4235</identifier><identifier>EISSN: 1439-7641</identifier><identifier>DOI: 10.1002/cphc.202000529</identifier><identifier>PMID: 32757346</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Atomizing ; back bonding ; catalysis ; Chemisorption ; Clusters ; dioxygen binding ; Enthalpy ; Metal oxides ; Metals ; Palladium ; Platinum ; quantum chemistry ; Quantum mechanics ; Transition metals</subject><ispartof>Chemphyschem, 2020-10, Vol.21 (19), p.2173-2186</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2020 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4509-b7b7d711eda5bddb5c51d8efb1cb669edac13a6e21163a92ff578355ba52e1903</citedby><cites>FETCH-LOGICAL-c4509-b7b7d711eda5bddb5c51d8efb1cb669edac13a6e21163a92ff578355ba52e1903</cites><orcidid>0000-0002-6754-7348</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcphc.202000529$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcphc.202000529$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32757346$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Moltved, Klaus A.</creatorcontrib><creatorcontrib>Kepp, Kasper P.</creatorcontrib><title>Dioxygen Binding to all 3d, 4d, and 5d Transition Metals from Coupled‐Cluster Theory</title><title>Chemphyschem</title><addtitle>Chemphyschem</addtitle><description>Understanding how transition metals bind and activate dioxygen (O2) is limited by experimental and theoretical uncertainties, making accurate quantum mechanical descriptors of interest. Here we report coupled‐cluster CCSD(T) energies with large basis sets and vibrational and relativistic corrections for 160 3d, 4d, and 5d metal‐O2 systems. We define four reaction energies (120 in total for the 30 metals) that quantify O−O activation and reveal linear relationships between metal‐oxygen and O−O binding energies. The CCSD(T) data can be combined with thermochemical cycles to estimate chemisorption and physisorption energies for each metal from metal oxide embedding energies, in good correlation with atomization enthalpies (R2=0.75). Spin‐geometry variations can break the linearities, of interest to circumventing the Sabatier principle. Pt, Pd, Co, and Fe form a distinct group with the weakest O2 binding. R2 up to 0.84 between surface adsorption energies and our energies for MO2 systems indicate relevance also to real catalytic systems.
Transition metal bonding to O2 is of major biological and catalytic importance. We report a complete coupled‐cluster CCSD(T) study of all 3d, 4d, and 5d metals bonding to O2. Our CCSD(T) data should aid DFT benchmarks and give insight into linear energy relations and O−O bond activation upon metal–oxygen bonding.</description><subject>Atomizing</subject><subject>back bonding</subject><subject>catalysis</subject><subject>Chemisorption</subject><subject>Clusters</subject><subject>dioxygen binding</subject><subject>Enthalpy</subject><subject>Metal oxides</subject><subject>Metals</subject><subject>Palladium</subject><subject>Platinum</subject><subject>quantum chemistry</subject><subject>Quantum mechanics</subject><subject>Transition metals</subject><issn>1439-4235</issn><issn>1439-7641</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqF0LtOwzAUBmALgWgprIzIEgsDKb7EcT1CuBSpCIbCGjmx06ZK4mIngmw8As_Ik-CqpUgsDJYt6zu_jn4AjjEaYoTIRbacZ0OCCEKIEbED-jikIuBRiHc375BQ1gMHzi28GSGO90GPEs44DaM-eLkuzHs30zW8KmpV1DPYGCjLElJ1DkN_ZK0gU3BqZe2KpjA1fNCNLB3MralgbNplqdXXx2dctq7RFk7n2tjuEOzlHumjzT0Az7c303gcTB7v7uPLSZCFDIkg5SlXHGOtJEuVSlnGsBrpPMVZGkXCf2eYykgTjCMqBclzxkeUsVQyorFAdADO1rlLa15b7ZqkKlymy1LW2rQuISFFgguKsaenf-jCtLb223kVcs4jQYlXw7XKrHHO6jxZ2qKStkswSlaNJ6vGk23jfuBkE9umlVZb_lOxB2IN3opSd__EJfHTOP4N_wbrAoxO</recordid><startdate>20201002</startdate><enddate>20201002</enddate><creator>Moltved, Klaus A.</creator><creator>Kepp, Kasper P.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6754-7348</orcidid></search><sort><creationdate>20201002</creationdate><title>Dioxygen Binding to all 3d, 4d, and 5d Transition Metals from Coupled‐Cluster Theory</title><author>Moltved, Klaus A. ; Kepp, Kasper P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4509-b7b7d711eda5bddb5c51d8efb1cb669edac13a6e21163a92ff578355ba52e1903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Atomizing</topic><topic>back bonding</topic><topic>catalysis</topic><topic>Chemisorption</topic><topic>Clusters</topic><topic>dioxygen binding</topic><topic>Enthalpy</topic><topic>Metal oxides</topic><topic>Metals</topic><topic>Palladium</topic><topic>Platinum</topic><topic>quantum chemistry</topic><topic>Quantum mechanics</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moltved, Klaus A.</creatorcontrib><creatorcontrib>Kepp, Kasper P.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemphyschem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moltved, Klaus A.</au><au>Kepp, Kasper P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dioxygen Binding to all 3d, 4d, and 5d Transition Metals from Coupled‐Cluster Theory</atitle><jtitle>Chemphyschem</jtitle><addtitle>Chemphyschem</addtitle><date>2020-10-02</date><risdate>2020</risdate><volume>21</volume><issue>19</issue><spage>2173</spage><epage>2186</epage><pages>2173-2186</pages><issn>1439-4235</issn><eissn>1439-7641</eissn><abstract>Understanding how transition metals bind and activate dioxygen (O2) is limited by experimental and theoretical uncertainties, making accurate quantum mechanical descriptors of interest. Here we report coupled‐cluster CCSD(T) energies with large basis sets and vibrational and relativistic corrections for 160 3d, 4d, and 5d metal‐O2 systems. We define four reaction energies (120 in total for the 30 metals) that quantify O−O activation and reveal linear relationships between metal‐oxygen and O−O binding energies. The CCSD(T) data can be combined with thermochemical cycles to estimate chemisorption and physisorption energies for each metal from metal oxide embedding energies, in good correlation with atomization enthalpies (R2=0.75). Spin‐geometry variations can break the linearities, of interest to circumventing the Sabatier principle. Pt, Pd, Co, and Fe form a distinct group with the weakest O2 binding. R2 up to 0.84 between surface adsorption energies and our energies for MO2 systems indicate relevance also to real catalytic systems.
Transition metal bonding to O2 is of major biological and catalytic importance. We report a complete coupled‐cluster CCSD(T) study of all 3d, 4d, and 5d metals bonding to O2. Our CCSD(T) data should aid DFT benchmarks and give insight into linear energy relations and O−O bond activation upon metal–oxygen bonding.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32757346</pmid><doi>10.1002/cphc.202000529</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6754-7348</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1439-4235 |
ispartof | Chemphyschem, 2020-10, Vol.21 (19), p.2173-2186 |
issn | 1439-4235 1439-7641 |
language | eng |
recordid | cdi_proquest_miscellaneous_2430979311 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Atomizing back bonding catalysis Chemisorption Clusters dioxygen binding Enthalpy Metal oxides Metals Palladium Platinum quantum chemistry Quantum mechanics Transition metals |
title | Dioxygen Binding to all 3d, 4d, and 5d Transition Metals from Coupled‐Cluster Theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T19%3A58%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dioxygen%20Binding%20to%20all%203d,%204d,%20and%205d%20Transition%20Metals%20from%20Coupled%E2%80%90Cluster%20Theory&rft.jtitle=Chemphyschem&rft.au=Moltved,%20Klaus%20A.&rft.date=2020-10-02&rft.volume=21&rft.issue=19&rft.spage=2173&rft.epage=2186&rft.pages=2173-2186&rft.issn=1439-4235&rft.eissn=1439-7641&rft_id=info:doi/10.1002/cphc.202000529&rft_dat=%3Cproquest_cross%3E2430979311%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2447776932&rft_id=info:pmid/32757346&rfr_iscdi=true |