Mammalian Atg8 proteins and the autophagy factor IRGM control mTOR and TFEB at a regulatory node critical for responses to pathogens
Autophagy is a homeostatic process with multiple functions in mammalian cells. Here, we show that mammalian Atg8 proteins (mAtg8s) and the autophagy regulator IRGM control TFEB, a transcriptional activator of the lysosomal system. IRGM directly interacted with TFEB and promoted the nuclear transloca...
Gespeichert in:
Veröffentlicht in: | Nature cell biology 2020-08, Vol.22 (8), p.973-985 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 985 |
---|---|
container_issue | 8 |
container_start_page | 973 |
container_title | Nature cell biology |
container_volume | 22 |
creator | Kumar, Suresh Jain, Ashish Choi, Seong Won da Silva, Gustavo Peixoto Duarte Allers, Lee Mudd, Michal H. Peters, Ryan Scott Anonsen, Jan Haug Rusten, Tor-Erik Lazarou, Michael Deretic, Vojo |
description | Autophagy is a homeostatic process with multiple functions in mammalian cells. Here, we show that mammalian Atg8 proteins (mAtg8s) and the autophagy regulator IRGM control TFEB, a transcriptional activator of the lysosomal system. IRGM directly interacted with TFEB and promoted the nuclear translocation of TFEB. An mAtg8 partner of IRGM, GABARAP, interacted with TFEB. Deletion of all mAtg8s or GABARAPs affected the global transcriptional response to starvation and downregulated subsets of TFEB targets. IRGM and GABARAPs countered the action of mTOR as a negative regulator of TFEB. This was suppressed by constitutively active RagB, an activator of mTOR. Infection of macrophages with the membrane-permeabilizing microbe
Mycobacterium tuberculosis
or infection of target cells by HIV elicited TFEB activation in an IRGM-dependent manner. Thus, IRGM and its interactors mAtg8s close a loop between the autophagosomal pathway and the control of lysosomal biogenesis by TFEB, thus ensuring coordinated activation of the two systems that eventually merge during autophagy.
Kumar et al. show that mammalian Atg8 proteins along with IRGM regulate the lysosomal system via mTOR and TFEB, respectively, in the response to pathogens. |
doi_str_mv | 10.1038/s41556-020-0549-1 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2430654973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A631617921</galeid><sourcerecordid>A631617921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c610t-2503905babaa82ddbb7ccfe63766aff40ad80cd9282e808beac2a41571fe65703</originalsourceid><addsrcrecordid>eNp9ks1u1DAUhSMEoqXwAGyQJTawSLEd_yTLoWrLSK0qDcPaunGcTKrEDrYjMXseHIcpVIMAeWHL_s617_HJstcEnxNclB8CI5yLHFOcY86qnDzJTgmTImdCVk-XteC5LCp6kr0I4R5jwhiWz7OTgkpeCElPs--3MI4w9GDRKnYlmryLprcBgW1Q3BkEc3TTDro9akFH59F6c32LtLPRuwGN27vNT3R7dfkRQUSAvOnmARK5R9Y1Bmnfx17DgNok9iZMzgYTUHRogrhznbHhZfashSGYVw_zWfbl6nJ78Sm_ubteX6xuci0IjjnluKgwr6EGKGnT1LXUujWikEJA2zIMTYl1U9GSmhKXtQFNIVkkSYK4xMVZ9u5QN3X5dTYhqrEP2gwDWOPmoCgrsEhGyiKhb_9A793sbXqdopJKkrwk1X-pVIsyxjl_pDoYjOpt66IHvVytVqIggsiKkkSd_4VKozFjn_w2bZ_2jwTvjwTLn5hvsYM5BLX-vDlmyYHV3oXgTasm34_g94pgtWRJHbKkUpbUkiW1aN48NDfXo2l-K36FJwH0AIR0ZDvjH7v_d9UfjNPQ4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430244555</pqid></control><display><type>article</type><title>Mammalian Atg8 proteins and the autophagy factor IRGM control mTOR and TFEB at a regulatory node critical for responses to pathogens</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Kumar, Suresh ; Jain, Ashish ; Choi, Seong Won ; da Silva, Gustavo Peixoto Duarte ; Allers, Lee ; Mudd, Michal H. ; Peters, Ryan Scott ; Anonsen, Jan Haug ; Rusten, Tor-Erik ; Lazarou, Michael ; Deretic, Vojo</creator><creatorcontrib>Kumar, Suresh ; Jain, Ashish ; Choi, Seong Won ; da Silva, Gustavo Peixoto Duarte ; Allers, Lee ; Mudd, Michal H. ; Peters, Ryan Scott ; Anonsen, Jan Haug ; Rusten, Tor-Erik ; Lazarou, Michael ; Deretic, Vojo</creatorcontrib><description>Autophagy is a homeostatic process with multiple functions in mammalian cells. Here, we show that mammalian Atg8 proteins (mAtg8s) and the autophagy regulator IRGM control TFEB, a transcriptional activator of the lysosomal system. IRGM directly interacted with TFEB and promoted the nuclear translocation of TFEB. An mAtg8 partner of IRGM, GABARAP, interacted with TFEB. Deletion of all mAtg8s or GABARAPs affected the global transcriptional response to starvation and downregulated subsets of TFEB targets. IRGM and GABARAPs countered the action of mTOR as a negative regulator of TFEB. This was suppressed by constitutively active RagB, an activator of mTOR. Infection of macrophages with the membrane-permeabilizing microbe
Mycobacterium tuberculosis
or infection of target cells by HIV elicited TFEB activation in an IRGM-dependent manner. Thus, IRGM and its interactors mAtg8s close a loop between the autophagosomal pathway and the control of lysosomal biogenesis by TFEB, thus ensuring coordinated activation of the two systems that eventually merge during autophagy.
Kumar et al. show that mammalian Atg8 proteins along with IRGM regulate the lysosomal system via mTOR and TFEB, respectively, in the response to pathogens.</description><identifier>ISSN: 1465-7392</identifier><identifier>EISSN: 1476-4679</identifier><identifier>DOI: 10.1038/s41556-020-0549-1</identifier><identifier>PMID: 32753672</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/250/262 ; 631/80/39/2346 ; 631/80/642 ; Activation ; Autophagy ; Autophagy (Cytology) ; Autophagy - physiology ; Autophagy-Related Protein 8 Family - physiology ; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism ; Biomedical and Life Sciences ; Calcineurin - metabolism ; Cancer Research ; Cell Biology ; Cell Line ; Cell Nucleus - metabolism ; Cellular proteins ; Developmental Biology ; Enzymes ; GABARAP protein ; Genetic aspects ; GTP-Binding Proteins - physiology ; Health aspects ; HEK293 Cells ; HeLa Cells ; HIV ; Host-parasite relationships ; Human immunodeficiency virus ; Humans ; Hydrolases ; Life Sciences ; Lysosomes - physiology ; Macrophages ; Mammalian cells ; Mammals ; Nuclear transport ; Pathogens ; Phagocytosis ; Protein Transport ; Proteins ; Qa-SNARE Proteins - metabolism ; Stem Cells ; TOR protein ; TOR Serine-Threonine Kinases - metabolism ; Transcription ; Translocation ; Tuberculosis</subject><ispartof>Nature cell biology, 2020-08, Vol.22 (8), p.973-985</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c610t-2503905babaa82ddbb7ccfe63766aff40ad80cd9282e808beac2a41571fe65703</citedby><cites>FETCH-LOGICAL-c610t-2503905babaa82ddbb7ccfe63766aff40ad80cd9282e808beac2a41571fe65703</cites><orcidid>0000-0001-6549-2788 ; 0000-0002-9150-2676 ; 0000-0002-3624-5208 ; 0000-0003-2150-5545</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41556-020-0549-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41556-020-0549-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32753672$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumar, Suresh</creatorcontrib><creatorcontrib>Jain, Ashish</creatorcontrib><creatorcontrib>Choi, Seong Won</creatorcontrib><creatorcontrib>da Silva, Gustavo Peixoto Duarte</creatorcontrib><creatorcontrib>Allers, Lee</creatorcontrib><creatorcontrib>Mudd, Michal H.</creatorcontrib><creatorcontrib>Peters, Ryan Scott</creatorcontrib><creatorcontrib>Anonsen, Jan Haug</creatorcontrib><creatorcontrib>Rusten, Tor-Erik</creatorcontrib><creatorcontrib>Lazarou, Michael</creatorcontrib><creatorcontrib>Deretic, Vojo</creatorcontrib><title>Mammalian Atg8 proteins and the autophagy factor IRGM control mTOR and TFEB at a regulatory node critical for responses to pathogens</title><title>Nature cell biology</title><addtitle>Nat Cell Biol</addtitle><addtitle>Nat Cell Biol</addtitle><description>Autophagy is a homeostatic process with multiple functions in mammalian cells. Here, we show that mammalian Atg8 proteins (mAtg8s) and the autophagy regulator IRGM control TFEB, a transcriptional activator of the lysosomal system. IRGM directly interacted with TFEB and promoted the nuclear translocation of TFEB. An mAtg8 partner of IRGM, GABARAP, interacted with TFEB. Deletion of all mAtg8s or GABARAPs affected the global transcriptional response to starvation and downregulated subsets of TFEB targets. IRGM and GABARAPs countered the action of mTOR as a negative regulator of TFEB. This was suppressed by constitutively active RagB, an activator of mTOR. Infection of macrophages with the membrane-permeabilizing microbe
Mycobacterium tuberculosis
or infection of target cells by HIV elicited TFEB activation in an IRGM-dependent manner. Thus, IRGM and its interactors mAtg8s close a loop between the autophagosomal pathway and the control of lysosomal biogenesis by TFEB, thus ensuring coordinated activation of the two systems that eventually merge during autophagy.
Kumar et al. show that mammalian Atg8 proteins along with IRGM regulate the lysosomal system via mTOR and TFEB, respectively, in the response to pathogens.</description><subject>631/250/262</subject><subject>631/80/39/2346</subject><subject>631/80/642</subject><subject>Activation</subject><subject>Autophagy</subject><subject>Autophagy (Cytology)</subject><subject>Autophagy - physiology</subject><subject>Autophagy-Related Protein 8 Family - physiology</subject><subject>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism</subject><subject>Biomedical and Life Sciences</subject><subject>Calcineurin - metabolism</subject><subject>Cancer Research</subject><subject>Cell Biology</subject><subject>Cell Line</subject><subject>Cell Nucleus - metabolism</subject><subject>Cellular proteins</subject><subject>Developmental Biology</subject><subject>Enzymes</subject><subject>GABARAP protein</subject><subject>Genetic aspects</subject><subject>GTP-Binding Proteins - physiology</subject><subject>Health aspects</subject><subject>HEK293 Cells</subject><subject>HeLa Cells</subject><subject>HIV</subject><subject>Host-parasite relationships</subject><subject>Human immunodeficiency virus</subject><subject>Humans</subject><subject>Hydrolases</subject><subject>Life Sciences</subject><subject>Lysosomes - physiology</subject><subject>Macrophages</subject><subject>Mammalian cells</subject><subject>Mammals</subject><subject>Nuclear transport</subject><subject>Pathogens</subject><subject>Phagocytosis</subject><subject>Protein Transport</subject><subject>Proteins</subject><subject>Qa-SNARE Proteins - metabolism</subject><subject>Stem Cells</subject><subject>TOR protein</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><subject>Transcription</subject><subject>Translocation</subject><subject>Tuberculosis</subject><issn>1465-7392</issn><issn>1476-4679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9ks1u1DAUhSMEoqXwAGyQJTawSLEd_yTLoWrLSK0qDcPaunGcTKrEDrYjMXseHIcpVIMAeWHL_s617_HJstcEnxNclB8CI5yLHFOcY86qnDzJTgmTImdCVk-XteC5LCp6kr0I4R5jwhiWz7OTgkpeCElPs--3MI4w9GDRKnYlmryLprcBgW1Q3BkEc3TTDro9akFH59F6c32LtLPRuwGN27vNT3R7dfkRQUSAvOnmARK5R9Y1Bmnfx17DgNok9iZMzgYTUHRogrhznbHhZfashSGYVw_zWfbl6nJ78Sm_ubteX6xuci0IjjnluKgwr6EGKGnT1LXUujWikEJA2zIMTYl1U9GSmhKXtQFNIVkkSYK4xMVZ9u5QN3X5dTYhqrEP2gwDWOPmoCgrsEhGyiKhb_9A793sbXqdopJKkrwk1X-pVIsyxjl_pDoYjOpt66IHvVytVqIggsiKkkSd_4VKozFjn_w2bZ_2jwTvjwTLn5hvsYM5BLX-vDlmyYHV3oXgTasm34_g94pgtWRJHbKkUpbUkiW1aN48NDfXo2l-K36FJwH0AIR0ZDvjH7v_d9UfjNPQ4Q</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Kumar, Suresh</creator><creator>Jain, Ashish</creator><creator>Choi, Seong Won</creator><creator>da Silva, Gustavo Peixoto Duarte</creator><creator>Allers, Lee</creator><creator>Mudd, Michal H.</creator><creator>Peters, Ryan Scott</creator><creator>Anonsen, Jan Haug</creator><creator>Rusten, Tor-Erik</creator><creator>Lazarou, Michael</creator><creator>Deretic, Vojo</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6549-2788</orcidid><orcidid>https://orcid.org/0000-0002-9150-2676</orcidid><orcidid>https://orcid.org/0000-0002-3624-5208</orcidid><orcidid>https://orcid.org/0000-0003-2150-5545</orcidid></search><sort><creationdate>20200801</creationdate><title>Mammalian Atg8 proteins and the autophagy factor IRGM control mTOR and TFEB at a regulatory node critical for responses to pathogens</title><author>Kumar, Suresh ; Jain, Ashish ; Choi, Seong Won ; da Silva, Gustavo Peixoto Duarte ; Allers, Lee ; Mudd, Michal H. ; Peters, Ryan Scott ; Anonsen, Jan Haug ; Rusten, Tor-Erik ; Lazarou, Michael ; Deretic, Vojo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c610t-2503905babaa82ddbb7ccfe63766aff40ad80cd9282e808beac2a41571fe65703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/250/262</topic><topic>631/80/39/2346</topic><topic>631/80/642</topic><topic>Activation</topic><topic>Autophagy</topic><topic>Autophagy (Cytology)</topic><topic>Autophagy - physiology</topic><topic>Autophagy-Related Protein 8 Family - physiology</topic><topic>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism</topic><topic>Biomedical and Life Sciences</topic><topic>Calcineurin - metabolism</topic><topic>Cancer Research</topic><topic>Cell Biology</topic><topic>Cell Line</topic><topic>Cell Nucleus - metabolism</topic><topic>Cellular proteins</topic><topic>Developmental Biology</topic><topic>Enzymes</topic><topic>GABARAP protein</topic><topic>Genetic aspects</topic><topic>GTP-Binding Proteins - physiology</topic><topic>Health aspects</topic><topic>HEK293 Cells</topic><topic>HeLa Cells</topic><topic>HIV</topic><topic>Host-parasite relationships</topic><topic>Human immunodeficiency virus</topic><topic>Humans</topic><topic>Hydrolases</topic><topic>Life Sciences</topic><topic>Lysosomes - physiology</topic><topic>Macrophages</topic><topic>Mammalian cells</topic><topic>Mammals</topic><topic>Nuclear transport</topic><topic>Pathogens</topic><topic>Phagocytosis</topic><topic>Protein Transport</topic><topic>Proteins</topic><topic>Qa-SNARE Proteins - metabolism</topic><topic>Stem Cells</topic><topic>TOR protein</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><topic>Transcription</topic><topic>Translocation</topic><topic>Tuberculosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Suresh</creatorcontrib><creatorcontrib>Jain, Ashish</creatorcontrib><creatorcontrib>Choi, Seong Won</creatorcontrib><creatorcontrib>da Silva, Gustavo Peixoto Duarte</creatorcontrib><creatorcontrib>Allers, Lee</creatorcontrib><creatorcontrib>Mudd, Michal H.</creatorcontrib><creatorcontrib>Peters, Ryan Scott</creatorcontrib><creatorcontrib>Anonsen, Jan Haug</creatorcontrib><creatorcontrib>Rusten, Tor-Erik</creatorcontrib><creatorcontrib>Lazarou, Michael</creatorcontrib><creatorcontrib>Deretic, Vojo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Suresh</au><au>Jain, Ashish</au><au>Choi, Seong Won</au><au>da Silva, Gustavo Peixoto Duarte</au><au>Allers, Lee</au><au>Mudd, Michal H.</au><au>Peters, Ryan Scott</au><au>Anonsen, Jan Haug</au><au>Rusten, Tor-Erik</au><au>Lazarou, Michael</au><au>Deretic, Vojo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mammalian Atg8 proteins and the autophagy factor IRGM control mTOR and TFEB at a regulatory node critical for responses to pathogens</atitle><jtitle>Nature cell biology</jtitle><stitle>Nat Cell Biol</stitle><addtitle>Nat Cell Biol</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>22</volume><issue>8</issue><spage>973</spage><epage>985</epage><pages>973-985</pages><issn>1465-7392</issn><eissn>1476-4679</eissn><abstract>Autophagy is a homeostatic process with multiple functions in mammalian cells. Here, we show that mammalian Atg8 proteins (mAtg8s) and the autophagy regulator IRGM control TFEB, a transcriptional activator of the lysosomal system. IRGM directly interacted with TFEB and promoted the nuclear translocation of TFEB. An mAtg8 partner of IRGM, GABARAP, interacted with TFEB. Deletion of all mAtg8s or GABARAPs affected the global transcriptional response to starvation and downregulated subsets of TFEB targets. IRGM and GABARAPs countered the action of mTOR as a negative regulator of TFEB. This was suppressed by constitutively active RagB, an activator of mTOR. Infection of macrophages with the membrane-permeabilizing microbe
Mycobacterium tuberculosis
or infection of target cells by HIV elicited TFEB activation in an IRGM-dependent manner. Thus, IRGM and its interactors mAtg8s close a loop between the autophagosomal pathway and the control of lysosomal biogenesis by TFEB, thus ensuring coordinated activation of the two systems that eventually merge during autophagy.
Kumar et al. show that mammalian Atg8 proteins along with IRGM regulate the lysosomal system via mTOR and TFEB, respectively, in the response to pathogens.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32753672</pmid><doi>10.1038/s41556-020-0549-1</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6549-2788</orcidid><orcidid>https://orcid.org/0000-0002-9150-2676</orcidid><orcidid>https://orcid.org/0000-0002-3624-5208</orcidid><orcidid>https://orcid.org/0000-0003-2150-5545</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1465-7392 |
ispartof | Nature cell biology, 2020-08, Vol.22 (8), p.973-985 |
issn | 1465-7392 1476-4679 |
language | eng |
recordid | cdi_proquest_miscellaneous_2430654973 |
source | MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | 631/250/262 631/80/39/2346 631/80/642 Activation Autophagy Autophagy (Cytology) Autophagy - physiology Autophagy-Related Protein 8 Family - physiology Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism Biomedical and Life Sciences Calcineurin - metabolism Cancer Research Cell Biology Cell Line Cell Nucleus - metabolism Cellular proteins Developmental Biology Enzymes GABARAP protein Genetic aspects GTP-Binding Proteins - physiology Health aspects HEK293 Cells HeLa Cells HIV Host-parasite relationships Human immunodeficiency virus Humans Hydrolases Life Sciences Lysosomes - physiology Macrophages Mammalian cells Mammals Nuclear transport Pathogens Phagocytosis Protein Transport Proteins Qa-SNARE Proteins - metabolism Stem Cells TOR protein TOR Serine-Threonine Kinases - metabolism Transcription Translocation Tuberculosis |
title | Mammalian Atg8 proteins and the autophagy factor IRGM control mTOR and TFEB at a regulatory node critical for responses to pathogens |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T22%3A23%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mammalian%20Atg8%20proteins%20and%20the%20autophagy%20factor%20IRGM%20control%20mTOR%20and%20TFEB%20at%20a%20regulatory%20node%20critical%20for%20responses%20to%20pathogens&rft.jtitle=Nature%20cell%20biology&rft.au=Kumar,%20Suresh&rft.date=2020-08-01&rft.volume=22&rft.issue=8&rft.spage=973&rft.epage=985&rft.pages=973-985&rft.issn=1465-7392&rft.eissn=1476-4679&rft_id=info:doi/10.1038/s41556-020-0549-1&rft_dat=%3Cgale_proqu%3EA631617921%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430244555&rft_id=info:pmid/32753672&rft_galeid=A631617921&rfr_iscdi=true |