Mammalian Atg8 proteins and the autophagy factor IRGM control mTOR and TFEB at a regulatory node critical for responses to pathogens

Autophagy is a homeostatic process with multiple functions in mammalian cells. Here, we show that mammalian Atg8 proteins (mAtg8s) and the autophagy regulator IRGM control TFEB, a transcriptional activator of the lysosomal system. IRGM directly interacted with TFEB and promoted the nuclear transloca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature cell biology 2020-08, Vol.22 (8), p.973-985
Hauptverfasser: Kumar, Suresh, Jain, Ashish, Choi, Seong Won, da Silva, Gustavo Peixoto Duarte, Allers, Lee, Mudd, Michal H., Peters, Ryan Scott, Anonsen, Jan Haug, Rusten, Tor-Erik, Lazarou, Michael, Deretic, Vojo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 985
container_issue 8
container_start_page 973
container_title Nature cell biology
container_volume 22
creator Kumar, Suresh
Jain, Ashish
Choi, Seong Won
da Silva, Gustavo Peixoto Duarte
Allers, Lee
Mudd, Michal H.
Peters, Ryan Scott
Anonsen, Jan Haug
Rusten, Tor-Erik
Lazarou, Michael
Deretic, Vojo
description Autophagy is a homeostatic process with multiple functions in mammalian cells. Here, we show that mammalian Atg8 proteins (mAtg8s) and the autophagy regulator IRGM control TFEB, a transcriptional activator of the lysosomal system. IRGM directly interacted with TFEB and promoted the nuclear translocation of TFEB. An mAtg8 partner of IRGM, GABARAP, interacted with TFEB. Deletion of all mAtg8s or GABARAPs affected the global transcriptional response to starvation and downregulated subsets of TFEB targets. IRGM and GABARAPs countered the action of mTOR as a negative regulator of TFEB. This was suppressed by constitutively active RagB, an activator of mTOR. Infection of macrophages with the membrane-permeabilizing microbe Mycobacterium tuberculosis or infection of target cells by HIV elicited TFEB activation in an IRGM-dependent manner. Thus, IRGM and its interactors mAtg8s close a loop between the autophagosomal pathway and the control of lysosomal biogenesis by TFEB, thus ensuring coordinated activation of the two systems that eventually merge during autophagy. Kumar et al. show that mammalian Atg8 proteins along with IRGM regulate the lysosomal system via mTOR and TFEB, respectively, in the response to pathogens.
doi_str_mv 10.1038/s41556-020-0549-1
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2430654973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A631617921</galeid><sourcerecordid>A631617921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c610t-2503905babaa82ddbb7ccfe63766aff40ad80cd9282e808beac2a41571fe65703</originalsourceid><addsrcrecordid>eNp9ks1u1DAUhSMEoqXwAGyQJTawSLEd_yTLoWrLSK0qDcPaunGcTKrEDrYjMXseHIcpVIMAeWHL_s617_HJstcEnxNclB8CI5yLHFOcY86qnDzJTgmTImdCVk-XteC5LCp6kr0I4R5jwhiWz7OTgkpeCElPs--3MI4w9GDRKnYlmryLprcBgW1Q3BkEc3TTDro9akFH59F6c32LtLPRuwGN27vNT3R7dfkRQUSAvOnmARK5R9Y1Bmnfx17DgNok9iZMzgYTUHRogrhznbHhZfashSGYVw_zWfbl6nJ78Sm_ubteX6xuci0IjjnluKgwr6EGKGnT1LXUujWikEJA2zIMTYl1U9GSmhKXtQFNIVkkSYK4xMVZ9u5QN3X5dTYhqrEP2gwDWOPmoCgrsEhGyiKhb_9A793sbXqdopJKkrwk1X-pVIsyxjl_pDoYjOpt66IHvVytVqIggsiKkkSd_4VKozFjn_w2bZ_2jwTvjwTLn5hvsYM5BLX-vDlmyYHV3oXgTasm34_g94pgtWRJHbKkUpbUkiW1aN48NDfXo2l-K36FJwH0AIR0ZDvjH7v_d9UfjNPQ4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430244555</pqid></control><display><type>article</type><title>Mammalian Atg8 proteins and the autophagy factor IRGM control mTOR and TFEB at a regulatory node critical for responses to pathogens</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Kumar, Suresh ; Jain, Ashish ; Choi, Seong Won ; da Silva, Gustavo Peixoto Duarte ; Allers, Lee ; Mudd, Michal H. ; Peters, Ryan Scott ; Anonsen, Jan Haug ; Rusten, Tor-Erik ; Lazarou, Michael ; Deretic, Vojo</creator><creatorcontrib>Kumar, Suresh ; Jain, Ashish ; Choi, Seong Won ; da Silva, Gustavo Peixoto Duarte ; Allers, Lee ; Mudd, Michal H. ; Peters, Ryan Scott ; Anonsen, Jan Haug ; Rusten, Tor-Erik ; Lazarou, Michael ; Deretic, Vojo</creatorcontrib><description>Autophagy is a homeostatic process with multiple functions in mammalian cells. Here, we show that mammalian Atg8 proteins (mAtg8s) and the autophagy regulator IRGM control TFEB, a transcriptional activator of the lysosomal system. IRGM directly interacted with TFEB and promoted the nuclear translocation of TFEB. An mAtg8 partner of IRGM, GABARAP, interacted with TFEB. Deletion of all mAtg8s or GABARAPs affected the global transcriptional response to starvation and downregulated subsets of TFEB targets. IRGM and GABARAPs countered the action of mTOR as a negative regulator of TFEB. This was suppressed by constitutively active RagB, an activator of mTOR. Infection of macrophages with the membrane-permeabilizing microbe Mycobacterium tuberculosis or infection of target cells by HIV elicited TFEB activation in an IRGM-dependent manner. Thus, IRGM and its interactors mAtg8s close a loop between the autophagosomal pathway and the control of lysosomal biogenesis by TFEB, thus ensuring coordinated activation of the two systems that eventually merge during autophagy. Kumar et al. show that mammalian Atg8 proteins along with IRGM regulate the lysosomal system via mTOR and TFEB, respectively, in the response to pathogens.</description><identifier>ISSN: 1465-7392</identifier><identifier>EISSN: 1476-4679</identifier><identifier>DOI: 10.1038/s41556-020-0549-1</identifier><identifier>PMID: 32753672</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/250/262 ; 631/80/39/2346 ; 631/80/642 ; Activation ; Autophagy ; Autophagy (Cytology) ; Autophagy - physiology ; Autophagy-Related Protein 8 Family - physiology ; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism ; Biomedical and Life Sciences ; Calcineurin - metabolism ; Cancer Research ; Cell Biology ; Cell Line ; Cell Nucleus - metabolism ; Cellular proteins ; Developmental Biology ; Enzymes ; GABARAP protein ; Genetic aspects ; GTP-Binding Proteins - physiology ; Health aspects ; HEK293 Cells ; HeLa Cells ; HIV ; Host-parasite relationships ; Human immunodeficiency virus ; Humans ; Hydrolases ; Life Sciences ; Lysosomes - physiology ; Macrophages ; Mammalian cells ; Mammals ; Nuclear transport ; Pathogens ; Phagocytosis ; Protein Transport ; Proteins ; Qa-SNARE Proteins - metabolism ; Stem Cells ; TOR protein ; TOR Serine-Threonine Kinases - metabolism ; Transcription ; Translocation ; Tuberculosis</subject><ispartof>Nature cell biology, 2020-08, Vol.22 (8), p.973-985</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c610t-2503905babaa82ddbb7ccfe63766aff40ad80cd9282e808beac2a41571fe65703</citedby><cites>FETCH-LOGICAL-c610t-2503905babaa82ddbb7ccfe63766aff40ad80cd9282e808beac2a41571fe65703</cites><orcidid>0000-0001-6549-2788 ; 0000-0002-9150-2676 ; 0000-0002-3624-5208 ; 0000-0003-2150-5545</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41556-020-0549-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41556-020-0549-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32753672$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumar, Suresh</creatorcontrib><creatorcontrib>Jain, Ashish</creatorcontrib><creatorcontrib>Choi, Seong Won</creatorcontrib><creatorcontrib>da Silva, Gustavo Peixoto Duarte</creatorcontrib><creatorcontrib>Allers, Lee</creatorcontrib><creatorcontrib>Mudd, Michal H.</creatorcontrib><creatorcontrib>Peters, Ryan Scott</creatorcontrib><creatorcontrib>Anonsen, Jan Haug</creatorcontrib><creatorcontrib>Rusten, Tor-Erik</creatorcontrib><creatorcontrib>Lazarou, Michael</creatorcontrib><creatorcontrib>Deretic, Vojo</creatorcontrib><title>Mammalian Atg8 proteins and the autophagy factor IRGM control mTOR and TFEB at a regulatory node critical for responses to pathogens</title><title>Nature cell biology</title><addtitle>Nat Cell Biol</addtitle><addtitle>Nat Cell Biol</addtitle><description>Autophagy is a homeostatic process with multiple functions in mammalian cells. Here, we show that mammalian Atg8 proteins (mAtg8s) and the autophagy regulator IRGM control TFEB, a transcriptional activator of the lysosomal system. IRGM directly interacted with TFEB and promoted the nuclear translocation of TFEB. An mAtg8 partner of IRGM, GABARAP, interacted with TFEB. Deletion of all mAtg8s or GABARAPs affected the global transcriptional response to starvation and downregulated subsets of TFEB targets. IRGM and GABARAPs countered the action of mTOR as a negative regulator of TFEB. This was suppressed by constitutively active RagB, an activator of mTOR. Infection of macrophages with the membrane-permeabilizing microbe Mycobacterium tuberculosis or infection of target cells by HIV elicited TFEB activation in an IRGM-dependent manner. Thus, IRGM and its interactors mAtg8s close a loop between the autophagosomal pathway and the control of lysosomal biogenesis by TFEB, thus ensuring coordinated activation of the two systems that eventually merge during autophagy. Kumar et al. show that mammalian Atg8 proteins along with IRGM regulate the lysosomal system via mTOR and TFEB, respectively, in the response to pathogens.</description><subject>631/250/262</subject><subject>631/80/39/2346</subject><subject>631/80/642</subject><subject>Activation</subject><subject>Autophagy</subject><subject>Autophagy (Cytology)</subject><subject>Autophagy - physiology</subject><subject>Autophagy-Related Protein 8 Family - physiology</subject><subject>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism</subject><subject>Biomedical and Life Sciences</subject><subject>Calcineurin - metabolism</subject><subject>Cancer Research</subject><subject>Cell Biology</subject><subject>Cell Line</subject><subject>Cell Nucleus - metabolism</subject><subject>Cellular proteins</subject><subject>Developmental Biology</subject><subject>Enzymes</subject><subject>GABARAP protein</subject><subject>Genetic aspects</subject><subject>GTP-Binding Proteins - physiology</subject><subject>Health aspects</subject><subject>HEK293 Cells</subject><subject>HeLa Cells</subject><subject>HIV</subject><subject>Host-parasite relationships</subject><subject>Human immunodeficiency virus</subject><subject>Humans</subject><subject>Hydrolases</subject><subject>Life Sciences</subject><subject>Lysosomes - physiology</subject><subject>Macrophages</subject><subject>Mammalian cells</subject><subject>Mammals</subject><subject>Nuclear transport</subject><subject>Pathogens</subject><subject>Phagocytosis</subject><subject>Protein Transport</subject><subject>Proteins</subject><subject>Qa-SNARE Proteins - metabolism</subject><subject>Stem Cells</subject><subject>TOR protein</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><subject>Transcription</subject><subject>Translocation</subject><subject>Tuberculosis</subject><issn>1465-7392</issn><issn>1476-4679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9ks1u1DAUhSMEoqXwAGyQJTawSLEd_yTLoWrLSK0qDcPaunGcTKrEDrYjMXseHIcpVIMAeWHL_s617_HJstcEnxNclB8CI5yLHFOcY86qnDzJTgmTImdCVk-XteC5LCp6kr0I4R5jwhiWz7OTgkpeCElPs--3MI4w9GDRKnYlmryLprcBgW1Q3BkEc3TTDro9akFH59F6c32LtLPRuwGN27vNT3R7dfkRQUSAvOnmARK5R9Y1Bmnfx17DgNok9iZMzgYTUHRogrhznbHhZfashSGYVw_zWfbl6nJ78Sm_ubteX6xuci0IjjnluKgwr6EGKGnT1LXUujWikEJA2zIMTYl1U9GSmhKXtQFNIVkkSYK4xMVZ9u5QN3X5dTYhqrEP2gwDWOPmoCgrsEhGyiKhb_9A793sbXqdopJKkrwk1X-pVIsyxjl_pDoYjOpt66IHvVytVqIggsiKkkSd_4VKozFjn_w2bZ_2jwTvjwTLn5hvsYM5BLX-vDlmyYHV3oXgTasm34_g94pgtWRJHbKkUpbUkiW1aN48NDfXo2l-K36FJwH0AIR0ZDvjH7v_d9UfjNPQ4Q</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Kumar, Suresh</creator><creator>Jain, Ashish</creator><creator>Choi, Seong Won</creator><creator>da Silva, Gustavo Peixoto Duarte</creator><creator>Allers, Lee</creator><creator>Mudd, Michal H.</creator><creator>Peters, Ryan Scott</creator><creator>Anonsen, Jan Haug</creator><creator>Rusten, Tor-Erik</creator><creator>Lazarou, Michael</creator><creator>Deretic, Vojo</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6549-2788</orcidid><orcidid>https://orcid.org/0000-0002-9150-2676</orcidid><orcidid>https://orcid.org/0000-0002-3624-5208</orcidid><orcidid>https://orcid.org/0000-0003-2150-5545</orcidid></search><sort><creationdate>20200801</creationdate><title>Mammalian Atg8 proteins and the autophagy factor IRGM control mTOR and TFEB at a regulatory node critical for responses to pathogens</title><author>Kumar, Suresh ; Jain, Ashish ; Choi, Seong Won ; da Silva, Gustavo Peixoto Duarte ; Allers, Lee ; Mudd, Michal H. ; Peters, Ryan Scott ; Anonsen, Jan Haug ; Rusten, Tor-Erik ; Lazarou, Michael ; Deretic, Vojo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c610t-2503905babaa82ddbb7ccfe63766aff40ad80cd9282e808beac2a41571fe65703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/250/262</topic><topic>631/80/39/2346</topic><topic>631/80/642</topic><topic>Activation</topic><topic>Autophagy</topic><topic>Autophagy (Cytology)</topic><topic>Autophagy - physiology</topic><topic>Autophagy-Related Protein 8 Family - physiology</topic><topic>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism</topic><topic>Biomedical and Life Sciences</topic><topic>Calcineurin - metabolism</topic><topic>Cancer Research</topic><topic>Cell Biology</topic><topic>Cell Line</topic><topic>Cell Nucleus - metabolism</topic><topic>Cellular proteins</topic><topic>Developmental Biology</topic><topic>Enzymes</topic><topic>GABARAP protein</topic><topic>Genetic aspects</topic><topic>GTP-Binding Proteins - physiology</topic><topic>Health aspects</topic><topic>HEK293 Cells</topic><topic>HeLa Cells</topic><topic>HIV</topic><topic>Host-parasite relationships</topic><topic>Human immunodeficiency virus</topic><topic>Humans</topic><topic>Hydrolases</topic><topic>Life Sciences</topic><topic>Lysosomes - physiology</topic><topic>Macrophages</topic><topic>Mammalian cells</topic><topic>Mammals</topic><topic>Nuclear transport</topic><topic>Pathogens</topic><topic>Phagocytosis</topic><topic>Protein Transport</topic><topic>Proteins</topic><topic>Qa-SNARE Proteins - metabolism</topic><topic>Stem Cells</topic><topic>TOR protein</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><topic>Transcription</topic><topic>Translocation</topic><topic>Tuberculosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Suresh</creatorcontrib><creatorcontrib>Jain, Ashish</creatorcontrib><creatorcontrib>Choi, Seong Won</creatorcontrib><creatorcontrib>da Silva, Gustavo Peixoto Duarte</creatorcontrib><creatorcontrib>Allers, Lee</creatorcontrib><creatorcontrib>Mudd, Michal H.</creatorcontrib><creatorcontrib>Peters, Ryan Scott</creatorcontrib><creatorcontrib>Anonsen, Jan Haug</creatorcontrib><creatorcontrib>Rusten, Tor-Erik</creatorcontrib><creatorcontrib>Lazarou, Michael</creatorcontrib><creatorcontrib>Deretic, Vojo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Suresh</au><au>Jain, Ashish</au><au>Choi, Seong Won</au><au>da Silva, Gustavo Peixoto Duarte</au><au>Allers, Lee</au><au>Mudd, Michal H.</au><au>Peters, Ryan Scott</au><au>Anonsen, Jan Haug</au><au>Rusten, Tor-Erik</au><au>Lazarou, Michael</au><au>Deretic, Vojo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mammalian Atg8 proteins and the autophagy factor IRGM control mTOR and TFEB at a regulatory node critical for responses to pathogens</atitle><jtitle>Nature cell biology</jtitle><stitle>Nat Cell Biol</stitle><addtitle>Nat Cell Biol</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>22</volume><issue>8</issue><spage>973</spage><epage>985</epage><pages>973-985</pages><issn>1465-7392</issn><eissn>1476-4679</eissn><abstract>Autophagy is a homeostatic process with multiple functions in mammalian cells. Here, we show that mammalian Atg8 proteins (mAtg8s) and the autophagy regulator IRGM control TFEB, a transcriptional activator of the lysosomal system. IRGM directly interacted with TFEB and promoted the nuclear translocation of TFEB. An mAtg8 partner of IRGM, GABARAP, interacted with TFEB. Deletion of all mAtg8s or GABARAPs affected the global transcriptional response to starvation and downregulated subsets of TFEB targets. IRGM and GABARAPs countered the action of mTOR as a negative regulator of TFEB. This was suppressed by constitutively active RagB, an activator of mTOR. Infection of macrophages with the membrane-permeabilizing microbe Mycobacterium tuberculosis or infection of target cells by HIV elicited TFEB activation in an IRGM-dependent manner. Thus, IRGM and its interactors mAtg8s close a loop between the autophagosomal pathway and the control of lysosomal biogenesis by TFEB, thus ensuring coordinated activation of the two systems that eventually merge during autophagy. Kumar et al. show that mammalian Atg8 proteins along with IRGM regulate the lysosomal system via mTOR and TFEB, respectively, in the response to pathogens.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32753672</pmid><doi>10.1038/s41556-020-0549-1</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6549-2788</orcidid><orcidid>https://orcid.org/0000-0002-9150-2676</orcidid><orcidid>https://orcid.org/0000-0002-3624-5208</orcidid><orcidid>https://orcid.org/0000-0003-2150-5545</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1465-7392
ispartof Nature cell biology, 2020-08, Vol.22 (8), p.973-985
issn 1465-7392
1476-4679
language eng
recordid cdi_proquest_miscellaneous_2430654973
source MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 631/250/262
631/80/39/2346
631/80/642
Activation
Autophagy
Autophagy (Cytology)
Autophagy - physiology
Autophagy-Related Protein 8 Family - physiology
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism
Biomedical and Life Sciences
Calcineurin - metabolism
Cancer Research
Cell Biology
Cell Line
Cell Nucleus - metabolism
Cellular proteins
Developmental Biology
Enzymes
GABARAP protein
Genetic aspects
GTP-Binding Proteins - physiology
Health aspects
HEK293 Cells
HeLa Cells
HIV
Host-parasite relationships
Human immunodeficiency virus
Humans
Hydrolases
Life Sciences
Lysosomes - physiology
Macrophages
Mammalian cells
Mammals
Nuclear transport
Pathogens
Phagocytosis
Protein Transport
Proteins
Qa-SNARE Proteins - metabolism
Stem Cells
TOR protein
TOR Serine-Threonine Kinases - metabolism
Transcription
Translocation
Tuberculosis
title Mammalian Atg8 proteins and the autophagy factor IRGM control mTOR and TFEB at a regulatory node critical for responses to pathogens
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T22%3A23%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mammalian%20Atg8%20proteins%20and%20the%20autophagy%20factor%20IRGM%20control%20mTOR%20and%20TFEB%20at%20a%20regulatory%20node%20critical%20for%20responses%20to%20pathogens&rft.jtitle=Nature%20cell%20biology&rft.au=Kumar,%20Suresh&rft.date=2020-08-01&rft.volume=22&rft.issue=8&rft.spage=973&rft.epage=985&rft.pages=973-985&rft.issn=1465-7392&rft.eissn=1476-4679&rft_id=info:doi/10.1038/s41556-020-0549-1&rft_dat=%3Cgale_proqu%3EA631617921%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430244555&rft_id=info:pmid/32753672&rft_galeid=A631617921&rfr_iscdi=true