LU-Net: A Multistage Attention Network to Improve the Robustness of Segmentation of Left Ventricular Structures in 2-D Echocardiography

Segmentation of cardiac structures is one of the fundamental steps to estimate volumetric indices of the heart. This step is still performed semiautomatically in clinical routine and is, thus, prone to interobserver and intraobserver variabilities. Recent studies have shown that deep learning has th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2020-12, Vol.67 (12), p.2519-2530
Hauptverfasser: Leclerc, Sarah, Smistad, Erik, Ostvik, Andreas, Cervenansky, Frederic, Espinosa, Florian, Espeland, Torvald, Rye Berg, Erik Andreas, Belhamissi, Mourad, Israilov, Sardor, Grenier, Thomas, Lartizien, Carole, Jodoin, Pierre-Marc, Lovstakken, Lasse, Bernard, Olivier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2530
container_issue 12
container_start_page 2519
container_title IEEE transactions on ultrasonics, ferroelectrics, and frequency control
container_volume 67
creator Leclerc, Sarah
Smistad, Erik
Ostvik, Andreas
Cervenansky, Frederic
Espinosa, Florian
Espeland, Torvald
Rye Berg, Erik Andreas
Belhamissi, Mourad
Israilov, Sardor
Grenier, Thomas
Lartizien, Carole
Jodoin, Pierre-Marc
Lovstakken, Lasse
Bernard, Olivier
description Segmentation of cardiac structures is one of the fundamental steps to estimate volumetric indices of the heart. This step is still performed semiautomatically in clinical routine and is, thus, prone to interobserver and intraobserver variabilities. Recent studies have shown that deep learning has the potential to perform fully automatic segmentation. However, the current best solutions still suffer from a lack of robustness in terms of accuracy and number of outliers. The goal of this work is to introduce a novel network designed to improve the overall segmentation accuracy of left ventricular structures (endocardial and epicardial borders) while enhancing the estimation of the corresponding clinical indices and reducing the number of outliers. This network is based on a multistage framework where both the localization and segmentation steps are optimized jointly through an end-to-end scheme. Results obtained on a large open access data set show that our method outperforms the current best-performing deep learning solution with a lighter architecture and achieved an overall segmentation accuracy lower than the intraobserver variability for the epicardial border (i.e., on average a mean absolute error of 1.5 mm and a Hausdorff distance of 5.1mm) with 11% of outliers. Moreover, we demonstrate that our method can closely reproduce the expert analysis for the end-diastolic and end-systolic left ventricular volumes, with a mean correlation of 0.96 and a mean absolute error of 7.6 ml. Concerning the ejection fraction of the left ventricle, results are more contrasted with a mean correlation coefficient of 0.83 and an absolute mean error of 5.0%, producing scores that are slightly below the intraobserver margin. Based on this observation, areas for improvement are suggested.
doi_str_mv 10.1109/TUFFC.2020.3003403
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2430375857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9120082</ieee_id><sourcerecordid>2465439482</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-51c46c143dfba5abbf135b69a77a88622fb29a22f91649fa49082db4cd16cf6b3</originalsourceid><addsrcrecordid>eNpdkc9uEzEQxi0EoqHwAiAhS1zgsMF_d-3eotDQSgtItOFqeb3exGV3HWxvUZ-A18ZpQg6cRjPz-0bz6QPgNUZzjJH8eLterZZzggiaU4QoQ_QJmGFOeCEk50_BDAnBC4owOgMvYrxDCDMmyXNwRknFSiyqGfhTr4uvNl3ABfwy9cnFpDcWLlKyY3J-hHn324efMHl4PeyCv7cwbS387pspptHGCH0Hb-xmyLx-VOS-tl2CP_IkODP1OsCbFCaTpmAjdCMkxSd4abbe6NA6vwl6t314CZ51uo_21bGeg_Xq8nZ5VdTfPl8vF3VhGJGp4Niw0mBG267RXDdNhylvSqmrSgtREtI1ROpcJC6Z7DSTSJC2YabFpenKhp6DD4e7W92rXXCDDg_Ka6euFrXazxDFTFJW3ePMvj-w2fevycakBheN7Xs9Wj9FRRhFtOKCVxl99x9656cwZieZKjmjkgmSKXKgTPAxBtudPsBI7SNVj5GqfaTqGGkWvT2enprBtifJvwwz8OYAOGvtaS0xQdk7_QsB-qTn</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2465439482</pqid></control><display><type>article</type><title>LU-Net: A Multistage Attention Network to Improve the Robustness of Segmentation of Left Ventricular Structures in 2-D Echocardiography</title><source>IEEE Electronic Library (IEL)</source><creator>Leclerc, Sarah ; Smistad, Erik ; Ostvik, Andreas ; Cervenansky, Frederic ; Espinosa, Florian ; Espeland, Torvald ; Rye Berg, Erik Andreas ; Belhamissi, Mourad ; Israilov, Sardor ; Grenier, Thomas ; Lartizien, Carole ; Jodoin, Pierre-Marc ; Lovstakken, Lasse ; Bernard, Olivier</creator><creatorcontrib>Leclerc, Sarah ; Smistad, Erik ; Ostvik, Andreas ; Cervenansky, Frederic ; Espinosa, Florian ; Espeland, Torvald ; Rye Berg, Erik Andreas ; Belhamissi, Mourad ; Israilov, Sardor ; Grenier, Thomas ; Lartizien, Carole ; Jodoin, Pierre-Marc ; Lovstakken, Lasse ; Bernard, Olivier</creatorcontrib><description>Segmentation of cardiac structures is one of the fundamental steps to estimate volumetric indices of the heart. This step is still performed semiautomatically in clinical routine and is, thus, prone to interobserver and intraobserver variabilities. Recent studies have shown that deep learning has the potential to perform fully automatic segmentation. However, the current best solutions still suffer from a lack of robustness in terms of accuracy and number of outliers. The goal of this work is to introduce a novel network designed to improve the overall segmentation accuracy of left ventricular structures (endocardial and epicardial borders) while enhancing the estimation of the corresponding clinical indices and reducing the number of outliers. This network is based on a multistage framework where both the localization and segmentation steps are optimized jointly through an end-to-end scheme. Results obtained on a large open access data set show that our method outperforms the current best-performing deep learning solution with a lighter architecture and achieved an overall segmentation accuracy lower than the intraobserver variability for the epicardial border (i.e., on average a mean absolute error of 1.5 mm and a Hausdorff distance of 5.1mm) with 11% of outliers. Moreover, we demonstrate that our method can closely reproduce the expert analysis for the end-diastolic and end-systolic left ventricular volumes, with a mean correlation of 0.96 and a mean absolute error of 7.6 ml. Concerning the ejection fraction of the left ventricle, results are more contrasted with a mean correlation coefficient of 0.83 and an absolute mean error of 5.0%, producing scores that are slightly below the intraobserver margin. Based on this observation, areas for improvement are suggested.</description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.2020.3003403</identifier><identifier>PMID: 32746187</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Accuracy ; Acoustics ; Cardiac diagnosis ; cardiac segmentation ; Correlation coefficients ; Deep learning ; Echocardiography ; Engineering Sciences ; Errors ; Image segmentation ; left ventricle (LV) ; localization ; Metric space ; Myocardium ; Observers ; Outliers (statistics) ; Robustness ; Segmentation ; Signal and Image processing ; Two dimensional displays ; Ultrasonic imaging ; ultrasound</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2020-12, Vol.67 (12), p.2519-2530</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-51c46c143dfba5abbf135b69a77a88622fb29a22f91649fa49082db4cd16cf6b3</citedby><cites>FETCH-LOGICAL-c429t-51c46c143dfba5abbf135b69a77a88622fb29a22f91649fa49082db4cd16cf6b3</cites><orcidid>0000-0002-4271-0292 ; 0000-0003-0752-9946 ; 0000-0001-6658-7594 ; 0000-0002-7258-4709 ; 0000-0003-3895-2683 ; 0000-0002-9243-0176 ; 0000-0003-2474-9588 ; 0000-0002-6038-5753 ; 0000-0001-7594-4231 ; 0000-0002-3630-5856</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9120082$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9120082$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32746187$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03149347$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Leclerc, Sarah</creatorcontrib><creatorcontrib>Smistad, Erik</creatorcontrib><creatorcontrib>Ostvik, Andreas</creatorcontrib><creatorcontrib>Cervenansky, Frederic</creatorcontrib><creatorcontrib>Espinosa, Florian</creatorcontrib><creatorcontrib>Espeland, Torvald</creatorcontrib><creatorcontrib>Rye Berg, Erik Andreas</creatorcontrib><creatorcontrib>Belhamissi, Mourad</creatorcontrib><creatorcontrib>Israilov, Sardor</creatorcontrib><creatorcontrib>Grenier, Thomas</creatorcontrib><creatorcontrib>Lartizien, Carole</creatorcontrib><creatorcontrib>Jodoin, Pierre-Marc</creatorcontrib><creatorcontrib>Lovstakken, Lasse</creatorcontrib><creatorcontrib>Bernard, Olivier</creatorcontrib><title>LU-Net: A Multistage Attention Network to Improve the Robustness of Segmentation of Left Ventricular Structures in 2-D Echocardiography</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description>Segmentation of cardiac structures is one of the fundamental steps to estimate volumetric indices of the heart. This step is still performed semiautomatically in clinical routine and is, thus, prone to interobserver and intraobserver variabilities. Recent studies have shown that deep learning has the potential to perform fully automatic segmentation. However, the current best solutions still suffer from a lack of robustness in terms of accuracy and number of outliers. The goal of this work is to introduce a novel network designed to improve the overall segmentation accuracy of left ventricular structures (endocardial and epicardial borders) while enhancing the estimation of the corresponding clinical indices and reducing the number of outliers. This network is based on a multistage framework where both the localization and segmentation steps are optimized jointly through an end-to-end scheme. Results obtained on a large open access data set show that our method outperforms the current best-performing deep learning solution with a lighter architecture and achieved an overall segmentation accuracy lower than the intraobserver variability for the epicardial border (i.e., on average a mean absolute error of 1.5 mm and a Hausdorff distance of 5.1mm) with 11% of outliers. Moreover, we demonstrate that our method can closely reproduce the expert analysis for the end-diastolic and end-systolic left ventricular volumes, with a mean correlation of 0.96 and a mean absolute error of 7.6 ml. Concerning the ejection fraction of the left ventricle, results are more contrasted with a mean correlation coefficient of 0.83 and an absolute mean error of 5.0%, producing scores that are slightly below the intraobserver margin. Based on this observation, areas for improvement are suggested.</description><subject>Accuracy</subject><subject>Acoustics</subject><subject>Cardiac diagnosis</subject><subject>cardiac segmentation</subject><subject>Correlation coefficients</subject><subject>Deep learning</subject><subject>Echocardiography</subject><subject>Engineering Sciences</subject><subject>Errors</subject><subject>Image segmentation</subject><subject>left ventricle (LV)</subject><subject>localization</subject><subject>Metric space</subject><subject>Myocardium</subject><subject>Observers</subject><subject>Outliers (statistics)</subject><subject>Robustness</subject><subject>Segmentation</subject><subject>Signal and Image processing</subject><subject>Two dimensional displays</subject><subject>Ultrasonic imaging</subject><subject>ultrasound</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkc9uEzEQxi0EoqHwAiAhS1zgsMF_d-3eotDQSgtItOFqeb3exGV3HWxvUZ-A18ZpQg6cRjPz-0bz6QPgNUZzjJH8eLterZZzggiaU4QoQ_QJmGFOeCEk50_BDAnBC4owOgMvYrxDCDMmyXNwRknFSiyqGfhTr4uvNl3ABfwy9cnFpDcWLlKyY3J-hHn324efMHl4PeyCv7cwbS387pspptHGCH0Hb-xmyLx-VOS-tl2CP_IkODP1OsCbFCaTpmAjdCMkxSd4abbe6NA6vwl6t314CZ51uo_21bGeg_Xq8nZ5VdTfPl8vF3VhGJGp4Niw0mBG267RXDdNhylvSqmrSgtREtI1ROpcJC6Z7DSTSJC2YabFpenKhp6DD4e7W92rXXCDDg_Ka6euFrXazxDFTFJW3ePMvj-w2fevycakBheN7Xs9Wj9FRRhFtOKCVxl99x9656cwZieZKjmjkgmSKXKgTPAxBtudPsBI7SNVj5GqfaTqGGkWvT2enprBtifJvwwz8OYAOGvtaS0xQdk7_QsB-qTn</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Leclerc, Sarah</creator><creator>Smistad, Erik</creator><creator>Ostvik, Andreas</creator><creator>Cervenansky, Frederic</creator><creator>Espinosa, Florian</creator><creator>Espeland, Torvald</creator><creator>Rye Berg, Erik Andreas</creator><creator>Belhamissi, Mourad</creator><creator>Israilov, Sardor</creator><creator>Grenier, Thomas</creator><creator>Lartizien, Carole</creator><creator>Jodoin, Pierre-Marc</creator><creator>Lovstakken, Lasse</creator><creator>Bernard, Olivier</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4271-0292</orcidid><orcidid>https://orcid.org/0000-0003-0752-9946</orcidid><orcidid>https://orcid.org/0000-0001-6658-7594</orcidid><orcidid>https://orcid.org/0000-0002-7258-4709</orcidid><orcidid>https://orcid.org/0000-0003-3895-2683</orcidid><orcidid>https://orcid.org/0000-0002-9243-0176</orcidid><orcidid>https://orcid.org/0000-0003-2474-9588</orcidid><orcidid>https://orcid.org/0000-0002-6038-5753</orcidid><orcidid>https://orcid.org/0000-0001-7594-4231</orcidid><orcidid>https://orcid.org/0000-0002-3630-5856</orcidid></search><sort><creationdate>20201201</creationdate><title>LU-Net: A Multistage Attention Network to Improve the Robustness of Segmentation of Left Ventricular Structures in 2-D Echocardiography</title><author>Leclerc, Sarah ; Smistad, Erik ; Ostvik, Andreas ; Cervenansky, Frederic ; Espinosa, Florian ; Espeland, Torvald ; Rye Berg, Erik Andreas ; Belhamissi, Mourad ; Israilov, Sardor ; Grenier, Thomas ; Lartizien, Carole ; Jodoin, Pierre-Marc ; Lovstakken, Lasse ; Bernard, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-51c46c143dfba5abbf135b69a77a88622fb29a22f91649fa49082db4cd16cf6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Acoustics</topic><topic>Cardiac diagnosis</topic><topic>cardiac segmentation</topic><topic>Correlation coefficients</topic><topic>Deep learning</topic><topic>Echocardiography</topic><topic>Engineering Sciences</topic><topic>Errors</topic><topic>Image segmentation</topic><topic>left ventricle (LV)</topic><topic>localization</topic><topic>Metric space</topic><topic>Myocardium</topic><topic>Observers</topic><topic>Outliers (statistics)</topic><topic>Robustness</topic><topic>Segmentation</topic><topic>Signal and Image processing</topic><topic>Two dimensional displays</topic><topic>Ultrasonic imaging</topic><topic>ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leclerc, Sarah</creatorcontrib><creatorcontrib>Smistad, Erik</creatorcontrib><creatorcontrib>Ostvik, Andreas</creatorcontrib><creatorcontrib>Cervenansky, Frederic</creatorcontrib><creatorcontrib>Espinosa, Florian</creatorcontrib><creatorcontrib>Espeland, Torvald</creatorcontrib><creatorcontrib>Rye Berg, Erik Andreas</creatorcontrib><creatorcontrib>Belhamissi, Mourad</creatorcontrib><creatorcontrib>Israilov, Sardor</creatorcontrib><creatorcontrib>Grenier, Thomas</creatorcontrib><creatorcontrib>Lartizien, Carole</creatorcontrib><creatorcontrib>Jodoin, Pierre-Marc</creatorcontrib><creatorcontrib>Lovstakken, Lasse</creatorcontrib><creatorcontrib>Bernard, Olivier</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Leclerc, Sarah</au><au>Smistad, Erik</au><au>Ostvik, Andreas</au><au>Cervenansky, Frederic</au><au>Espinosa, Florian</au><au>Espeland, Torvald</au><au>Rye Berg, Erik Andreas</au><au>Belhamissi, Mourad</au><au>Israilov, Sardor</au><au>Grenier, Thomas</au><au>Lartizien, Carole</au><au>Jodoin, Pierre-Marc</au><au>Lovstakken, Lasse</au><au>Bernard, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LU-Net: A Multistage Attention Network to Improve the Robustness of Segmentation of Left Ventricular Structures in 2-D Echocardiography</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>67</volume><issue>12</issue><spage>2519</spage><epage>2530</epage><pages>2519-2530</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract>Segmentation of cardiac structures is one of the fundamental steps to estimate volumetric indices of the heart. This step is still performed semiautomatically in clinical routine and is, thus, prone to interobserver and intraobserver variabilities. Recent studies have shown that deep learning has the potential to perform fully automatic segmentation. However, the current best solutions still suffer from a lack of robustness in terms of accuracy and number of outliers. The goal of this work is to introduce a novel network designed to improve the overall segmentation accuracy of left ventricular structures (endocardial and epicardial borders) while enhancing the estimation of the corresponding clinical indices and reducing the number of outliers. This network is based on a multistage framework where both the localization and segmentation steps are optimized jointly through an end-to-end scheme. Results obtained on a large open access data set show that our method outperforms the current best-performing deep learning solution with a lighter architecture and achieved an overall segmentation accuracy lower than the intraobserver variability for the epicardial border (i.e., on average a mean absolute error of 1.5 mm and a Hausdorff distance of 5.1mm) with 11% of outliers. Moreover, we demonstrate that our method can closely reproduce the expert analysis for the end-diastolic and end-systolic left ventricular volumes, with a mean correlation of 0.96 and a mean absolute error of 7.6 ml. Concerning the ejection fraction of the left ventricle, results are more contrasted with a mean correlation coefficient of 0.83 and an absolute mean error of 5.0%, producing scores that are slightly below the intraobserver margin. Based on this observation, areas for improvement are suggested.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>32746187</pmid><doi>10.1109/TUFFC.2020.3003403</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4271-0292</orcidid><orcidid>https://orcid.org/0000-0003-0752-9946</orcidid><orcidid>https://orcid.org/0000-0001-6658-7594</orcidid><orcidid>https://orcid.org/0000-0002-7258-4709</orcidid><orcidid>https://orcid.org/0000-0003-3895-2683</orcidid><orcidid>https://orcid.org/0000-0002-9243-0176</orcidid><orcidid>https://orcid.org/0000-0003-2474-9588</orcidid><orcidid>https://orcid.org/0000-0002-6038-5753</orcidid><orcidid>https://orcid.org/0000-0001-7594-4231</orcidid><orcidid>https://orcid.org/0000-0002-3630-5856</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-3010
ispartof IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2020-12, Vol.67 (12), p.2519-2530
issn 0885-3010
1525-8955
language eng
recordid cdi_proquest_miscellaneous_2430375857
source IEEE Electronic Library (IEL)
subjects Accuracy
Acoustics
Cardiac diagnosis
cardiac segmentation
Correlation coefficients
Deep learning
Echocardiography
Engineering Sciences
Errors
Image segmentation
left ventricle (LV)
localization
Metric space
Myocardium
Observers
Outliers (statistics)
Robustness
Segmentation
Signal and Image processing
Two dimensional displays
Ultrasonic imaging
ultrasound
title LU-Net: A Multistage Attention Network to Improve the Robustness of Segmentation of Left Ventricular Structures in 2-D Echocardiography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T08%3A29%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LU-Net:%20A%20Multistage%20Attention%20Network%20to%20Improve%20the%20Robustness%20of%20Segmentation%20of%20Left%20Ventricular%20Structures%20in%202-D%20Echocardiography&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Leclerc,%20Sarah&rft.date=2020-12-01&rft.volume=67&rft.issue=12&rft.spage=2519&rft.epage=2530&rft.pages=2519-2530&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/TUFFC.2020.3003403&rft_dat=%3Cproquest_RIE%3E2465439482%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2465439482&rft_id=info:pmid/32746187&rft_ieee_id=9120082&rfr_iscdi=true