LU-Net: A Multistage Attention Network to Improve the Robustness of Segmentation of Left Ventricular Structures in 2-D Echocardiography
Segmentation of cardiac structures is one of the fundamental steps to estimate volumetric indices of the heart. This step is still performed semiautomatically in clinical routine and is, thus, prone to interobserver and intraobserver variabilities. Recent studies have shown that deep learning has th...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2020-12, Vol.67 (12), p.2519-2530 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2530 |
---|---|
container_issue | 12 |
container_start_page | 2519 |
container_title | IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
container_volume | 67 |
creator | Leclerc, Sarah Smistad, Erik Ostvik, Andreas Cervenansky, Frederic Espinosa, Florian Espeland, Torvald Rye Berg, Erik Andreas Belhamissi, Mourad Israilov, Sardor Grenier, Thomas Lartizien, Carole Jodoin, Pierre-Marc Lovstakken, Lasse Bernard, Olivier |
description | Segmentation of cardiac structures is one of the fundamental steps to estimate volumetric indices of the heart. This step is still performed semiautomatically in clinical routine and is, thus, prone to interobserver and intraobserver variabilities. Recent studies have shown that deep learning has the potential to perform fully automatic segmentation. However, the current best solutions still suffer from a lack of robustness in terms of accuracy and number of outliers. The goal of this work is to introduce a novel network designed to improve the overall segmentation accuracy of left ventricular structures (endocardial and epicardial borders) while enhancing the estimation of the corresponding clinical indices and reducing the number of outliers. This network is based on a multistage framework where both the localization and segmentation steps are optimized jointly through an end-to-end scheme. Results obtained on a large open access data set show that our method outperforms the current best-performing deep learning solution with a lighter architecture and achieved an overall segmentation accuracy lower than the intraobserver variability for the epicardial border (i.e., on average a mean absolute error of 1.5 mm and a Hausdorff distance of 5.1mm) with 11% of outliers. Moreover, we demonstrate that our method can closely reproduce the expert analysis for the end-diastolic and end-systolic left ventricular volumes, with a mean correlation of 0.96 and a mean absolute error of 7.6 ml. Concerning the ejection fraction of the left ventricle, results are more contrasted with a mean correlation coefficient of 0.83 and an absolute mean error of 5.0%, producing scores that are slightly below the intraobserver margin. Based on this observation, areas for improvement are suggested. |
doi_str_mv | 10.1109/TUFFC.2020.3003403 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2430375857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9120082</ieee_id><sourcerecordid>2465439482</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-51c46c143dfba5abbf135b69a77a88622fb29a22f91649fa49082db4cd16cf6b3</originalsourceid><addsrcrecordid>eNpdkc9uEzEQxi0EoqHwAiAhS1zgsMF_d-3eotDQSgtItOFqeb3exGV3HWxvUZ-A18ZpQg6cRjPz-0bz6QPgNUZzjJH8eLterZZzggiaU4QoQ_QJmGFOeCEk50_BDAnBC4owOgMvYrxDCDMmyXNwRknFSiyqGfhTr4uvNl3ABfwy9cnFpDcWLlKyY3J-hHn324efMHl4PeyCv7cwbS387pspptHGCH0Hb-xmyLx-VOS-tl2CP_IkODP1OsCbFCaTpmAjdCMkxSd4abbe6NA6vwl6t314CZ51uo_21bGeg_Xq8nZ5VdTfPl8vF3VhGJGp4Niw0mBG267RXDdNhylvSqmrSgtREtI1ROpcJC6Z7DSTSJC2YabFpenKhp6DD4e7W92rXXCDDg_Ka6euFrXazxDFTFJW3ePMvj-w2fevycakBheN7Xs9Wj9FRRhFtOKCVxl99x9656cwZieZKjmjkgmSKXKgTPAxBtudPsBI7SNVj5GqfaTqGGkWvT2enprBtifJvwwz8OYAOGvtaS0xQdk7_QsB-qTn</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2465439482</pqid></control><display><type>article</type><title>LU-Net: A Multistage Attention Network to Improve the Robustness of Segmentation of Left Ventricular Structures in 2-D Echocardiography</title><source>IEEE Electronic Library (IEL)</source><creator>Leclerc, Sarah ; Smistad, Erik ; Ostvik, Andreas ; Cervenansky, Frederic ; Espinosa, Florian ; Espeland, Torvald ; Rye Berg, Erik Andreas ; Belhamissi, Mourad ; Israilov, Sardor ; Grenier, Thomas ; Lartizien, Carole ; Jodoin, Pierre-Marc ; Lovstakken, Lasse ; Bernard, Olivier</creator><creatorcontrib>Leclerc, Sarah ; Smistad, Erik ; Ostvik, Andreas ; Cervenansky, Frederic ; Espinosa, Florian ; Espeland, Torvald ; Rye Berg, Erik Andreas ; Belhamissi, Mourad ; Israilov, Sardor ; Grenier, Thomas ; Lartizien, Carole ; Jodoin, Pierre-Marc ; Lovstakken, Lasse ; Bernard, Olivier</creatorcontrib><description>Segmentation of cardiac structures is one of the fundamental steps to estimate volumetric indices of the heart. This step is still performed semiautomatically in clinical routine and is, thus, prone to interobserver and intraobserver variabilities. Recent studies have shown that deep learning has the potential to perform fully automatic segmentation. However, the current best solutions still suffer from a lack of robustness in terms of accuracy and number of outliers. The goal of this work is to introduce a novel network designed to improve the overall segmentation accuracy of left ventricular structures (endocardial and epicardial borders) while enhancing the estimation of the corresponding clinical indices and reducing the number of outliers. This network is based on a multistage framework where both the localization and segmentation steps are optimized jointly through an end-to-end scheme. Results obtained on a large open access data set show that our method outperforms the current best-performing deep learning solution with a lighter architecture and achieved an overall segmentation accuracy lower than the intraobserver variability for the epicardial border (i.e., on average a mean absolute error of 1.5 mm and a Hausdorff distance of 5.1mm) with 11% of outliers. Moreover, we demonstrate that our method can closely reproduce the expert analysis for the end-diastolic and end-systolic left ventricular volumes, with a mean correlation of 0.96 and a mean absolute error of 7.6 ml. Concerning the ejection fraction of the left ventricle, results are more contrasted with a mean correlation coefficient of 0.83 and an absolute mean error of 5.0%, producing scores that are slightly below the intraobserver margin. Based on this observation, areas for improvement are suggested.</description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.2020.3003403</identifier><identifier>PMID: 32746187</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Accuracy ; Acoustics ; Cardiac diagnosis ; cardiac segmentation ; Correlation coefficients ; Deep learning ; Echocardiography ; Engineering Sciences ; Errors ; Image segmentation ; left ventricle (LV) ; localization ; Metric space ; Myocardium ; Observers ; Outliers (statistics) ; Robustness ; Segmentation ; Signal and Image processing ; Two dimensional displays ; Ultrasonic imaging ; ultrasound</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2020-12, Vol.67 (12), p.2519-2530</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-51c46c143dfba5abbf135b69a77a88622fb29a22f91649fa49082db4cd16cf6b3</citedby><cites>FETCH-LOGICAL-c429t-51c46c143dfba5abbf135b69a77a88622fb29a22f91649fa49082db4cd16cf6b3</cites><orcidid>0000-0002-4271-0292 ; 0000-0003-0752-9946 ; 0000-0001-6658-7594 ; 0000-0002-7258-4709 ; 0000-0003-3895-2683 ; 0000-0002-9243-0176 ; 0000-0003-2474-9588 ; 0000-0002-6038-5753 ; 0000-0001-7594-4231 ; 0000-0002-3630-5856</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9120082$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9120082$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32746187$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03149347$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Leclerc, Sarah</creatorcontrib><creatorcontrib>Smistad, Erik</creatorcontrib><creatorcontrib>Ostvik, Andreas</creatorcontrib><creatorcontrib>Cervenansky, Frederic</creatorcontrib><creatorcontrib>Espinosa, Florian</creatorcontrib><creatorcontrib>Espeland, Torvald</creatorcontrib><creatorcontrib>Rye Berg, Erik Andreas</creatorcontrib><creatorcontrib>Belhamissi, Mourad</creatorcontrib><creatorcontrib>Israilov, Sardor</creatorcontrib><creatorcontrib>Grenier, Thomas</creatorcontrib><creatorcontrib>Lartizien, Carole</creatorcontrib><creatorcontrib>Jodoin, Pierre-Marc</creatorcontrib><creatorcontrib>Lovstakken, Lasse</creatorcontrib><creatorcontrib>Bernard, Olivier</creatorcontrib><title>LU-Net: A Multistage Attention Network to Improve the Robustness of Segmentation of Left Ventricular Structures in 2-D Echocardiography</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description>Segmentation of cardiac structures is one of the fundamental steps to estimate volumetric indices of the heart. This step is still performed semiautomatically in clinical routine and is, thus, prone to interobserver and intraobserver variabilities. Recent studies have shown that deep learning has the potential to perform fully automatic segmentation. However, the current best solutions still suffer from a lack of robustness in terms of accuracy and number of outliers. The goal of this work is to introduce a novel network designed to improve the overall segmentation accuracy of left ventricular structures (endocardial and epicardial borders) while enhancing the estimation of the corresponding clinical indices and reducing the number of outliers. This network is based on a multistage framework where both the localization and segmentation steps are optimized jointly through an end-to-end scheme. Results obtained on a large open access data set show that our method outperforms the current best-performing deep learning solution with a lighter architecture and achieved an overall segmentation accuracy lower than the intraobserver variability for the epicardial border (i.e., on average a mean absolute error of 1.5 mm and a Hausdorff distance of 5.1mm) with 11% of outliers. Moreover, we demonstrate that our method can closely reproduce the expert analysis for the end-diastolic and end-systolic left ventricular volumes, with a mean correlation of 0.96 and a mean absolute error of 7.6 ml. Concerning the ejection fraction of the left ventricle, results are more contrasted with a mean correlation coefficient of 0.83 and an absolute mean error of 5.0%, producing scores that are slightly below the intraobserver margin. Based on this observation, areas for improvement are suggested.</description><subject>Accuracy</subject><subject>Acoustics</subject><subject>Cardiac diagnosis</subject><subject>cardiac segmentation</subject><subject>Correlation coefficients</subject><subject>Deep learning</subject><subject>Echocardiography</subject><subject>Engineering Sciences</subject><subject>Errors</subject><subject>Image segmentation</subject><subject>left ventricle (LV)</subject><subject>localization</subject><subject>Metric space</subject><subject>Myocardium</subject><subject>Observers</subject><subject>Outliers (statistics)</subject><subject>Robustness</subject><subject>Segmentation</subject><subject>Signal and Image processing</subject><subject>Two dimensional displays</subject><subject>Ultrasonic imaging</subject><subject>ultrasound</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkc9uEzEQxi0EoqHwAiAhS1zgsMF_d-3eotDQSgtItOFqeb3exGV3HWxvUZ-A18ZpQg6cRjPz-0bz6QPgNUZzjJH8eLterZZzggiaU4QoQ_QJmGFOeCEk50_BDAnBC4owOgMvYrxDCDMmyXNwRknFSiyqGfhTr4uvNl3ABfwy9cnFpDcWLlKyY3J-hHn324efMHl4PeyCv7cwbS387pspptHGCH0Hb-xmyLx-VOS-tl2CP_IkODP1OsCbFCaTpmAjdCMkxSd4abbe6NA6vwl6t314CZ51uo_21bGeg_Xq8nZ5VdTfPl8vF3VhGJGp4Niw0mBG267RXDdNhylvSqmrSgtREtI1ROpcJC6Z7DSTSJC2YabFpenKhp6DD4e7W92rXXCDDg_Ka6euFrXazxDFTFJW3ePMvj-w2fevycakBheN7Xs9Wj9FRRhFtOKCVxl99x9656cwZieZKjmjkgmSKXKgTPAxBtudPsBI7SNVj5GqfaTqGGkWvT2enprBtifJvwwz8OYAOGvtaS0xQdk7_QsB-qTn</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Leclerc, Sarah</creator><creator>Smistad, Erik</creator><creator>Ostvik, Andreas</creator><creator>Cervenansky, Frederic</creator><creator>Espinosa, Florian</creator><creator>Espeland, Torvald</creator><creator>Rye Berg, Erik Andreas</creator><creator>Belhamissi, Mourad</creator><creator>Israilov, Sardor</creator><creator>Grenier, Thomas</creator><creator>Lartizien, Carole</creator><creator>Jodoin, Pierre-Marc</creator><creator>Lovstakken, Lasse</creator><creator>Bernard, Olivier</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4271-0292</orcidid><orcidid>https://orcid.org/0000-0003-0752-9946</orcidid><orcidid>https://orcid.org/0000-0001-6658-7594</orcidid><orcidid>https://orcid.org/0000-0002-7258-4709</orcidid><orcidid>https://orcid.org/0000-0003-3895-2683</orcidid><orcidid>https://orcid.org/0000-0002-9243-0176</orcidid><orcidid>https://orcid.org/0000-0003-2474-9588</orcidid><orcidid>https://orcid.org/0000-0002-6038-5753</orcidid><orcidid>https://orcid.org/0000-0001-7594-4231</orcidid><orcidid>https://orcid.org/0000-0002-3630-5856</orcidid></search><sort><creationdate>20201201</creationdate><title>LU-Net: A Multistage Attention Network to Improve the Robustness of Segmentation of Left Ventricular Structures in 2-D Echocardiography</title><author>Leclerc, Sarah ; Smistad, Erik ; Ostvik, Andreas ; Cervenansky, Frederic ; Espinosa, Florian ; Espeland, Torvald ; Rye Berg, Erik Andreas ; Belhamissi, Mourad ; Israilov, Sardor ; Grenier, Thomas ; Lartizien, Carole ; Jodoin, Pierre-Marc ; Lovstakken, Lasse ; Bernard, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-51c46c143dfba5abbf135b69a77a88622fb29a22f91649fa49082db4cd16cf6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Acoustics</topic><topic>Cardiac diagnosis</topic><topic>cardiac segmentation</topic><topic>Correlation coefficients</topic><topic>Deep learning</topic><topic>Echocardiography</topic><topic>Engineering Sciences</topic><topic>Errors</topic><topic>Image segmentation</topic><topic>left ventricle (LV)</topic><topic>localization</topic><topic>Metric space</topic><topic>Myocardium</topic><topic>Observers</topic><topic>Outliers (statistics)</topic><topic>Robustness</topic><topic>Segmentation</topic><topic>Signal and Image processing</topic><topic>Two dimensional displays</topic><topic>Ultrasonic imaging</topic><topic>ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leclerc, Sarah</creatorcontrib><creatorcontrib>Smistad, Erik</creatorcontrib><creatorcontrib>Ostvik, Andreas</creatorcontrib><creatorcontrib>Cervenansky, Frederic</creatorcontrib><creatorcontrib>Espinosa, Florian</creatorcontrib><creatorcontrib>Espeland, Torvald</creatorcontrib><creatorcontrib>Rye Berg, Erik Andreas</creatorcontrib><creatorcontrib>Belhamissi, Mourad</creatorcontrib><creatorcontrib>Israilov, Sardor</creatorcontrib><creatorcontrib>Grenier, Thomas</creatorcontrib><creatorcontrib>Lartizien, Carole</creatorcontrib><creatorcontrib>Jodoin, Pierre-Marc</creatorcontrib><creatorcontrib>Lovstakken, Lasse</creatorcontrib><creatorcontrib>Bernard, Olivier</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Leclerc, Sarah</au><au>Smistad, Erik</au><au>Ostvik, Andreas</au><au>Cervenansky, Frederic</au><au>Espinosa, Florian</au><au>Espeland, Torvald</au><au>Rye Berg, Erik Andreas</au><au>Belhamissi, Mourad</au><au>Israilov, Sardor</au><au>Grenier, Thomas</au><au>Lartizien, Carole</au><au>Jodoin, Pierre-Marc</au><au>Lovstakken, Lasse</au><au>Bernard, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LU-Net: A Multistage Attention Network to Improve the Robustness of Segmentation of Left Ventricular Structures in 2-D Echocardiography</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>67</volume><issue>12</issue><spage>2519</spage><epage>2530</epage><pages>2519-2530</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract>Segmentation of cardiac structures is one of the fundamental steps to estimate volumetric indices of the heart. This step is still performed semiautomatically in clinical routine and is, thus, prone to interobserver and intraobserver variabilities. Recent studies have shown that deep learning has the potential to perform fully automatic segmentation. However, the current best solutions still suffer from a lack of robustness in terms of accuracy and number of outliers. The goal of this work is to introduce a novel network designed to improve the overall segmentation accuracy of left ventricular structures (endocardial and epicardial borders) while enhancing the estimation of the corresponding clinical indices and reducing the number of outliers. This network is based on a multistage framework where both the localization and segmentation steps are optimized jointly through an end-to-end scheme. Results obtained on a large open access data set show that our method outperforms the current best-performing deep learning solution with a lighter architecture and achieved an overall segmentation accuracy lower than the intraobserver variability for the epicardial border (i.e., on average a mean absolute error of 1.5 mm and a Hausdorff distance of 5.1mm) with 11% of outliers. Moreover, we demonstrate that our method can closely reproduce the expert analysis for the end-diastolic and end-systolic left ventricular volumes, with a mean correlation of 0.96 and a mean absolute error of 7.6 ml. Concerning the ejection fraction of the left ventricle, results are more contrasted with a mean correlation coefficient of 0.83 and an absolute mean error of 5.0%, producing scores that are slightly below the intraobserver margin. Based on this observation, areas for improvement are suggested.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>32746187</pmid><doi>10.1109/TUFFC.2020.3003403</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4271-0292</orcidid><orcidid>https://orcid.org/0000-0003-0752-9946</orcidid><orcidid>https://orcid.org/0000-0001-6658-7594</orcidid><orcidid>https://orcid.org/0000-0002-7258-4709</orcidid><orcidid>https://orcid.org/0000-0003-3895-2683</orcidid><orcidid>https://orcid.org/0000-0002-9243-0176</orcidid><orcidid>https://orcid.org/0000-0003-2474-9588</orcidid><orcidid>https://orcid.org/0000-0002-6038-5753</orcidid><orcidid>https://orcid.org/0000-0001-7594-4231</orcidid><orcidid>https://orcid.org/0000-0002-3630-5856</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-3010 |
ispartof | IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2020-12, Vol.67 (12), p.2519-2530 |
issn | 0885-3010 1525-8955 |
language | eng |
recordid | cdi_proquest_miscellaneous_2430375857 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Acoustics Cardiac diagnosis cardiac segmentation Correlation coefficients Deep learning Echocardiography Engineering Sciences Errors Image segmentation left ventricle (LV) localization Metric space Myocardium Observers Outliers (statistics) Robustness Segmentation Signal and Image processing Two dimensional displays Ultrasonic imaging ultrasound |
title | LU-Net: A Multistage Attention Network to Improve the Robustness of Segmentation of Left Ventricular Structures in 2-D Echocardiography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T08%3A29%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LU-Net:%20A%20Multistage%20Attention%20Network%20to%20Improve%20the%20Robustness%20of%20Segmentation%20of%20Left%20Ventricular%20Structures%20in%202-D%20Echocardiography&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Leclerc,%20Sarah&rft.date=2020-12-01&rft.volume=67&rft.issue=12&rft.spage=2519&rft.epage=2530&rft.pages=2519-2530&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/TUFFC.2020.3003403&rft_dat=%3Cproquest_RIE%3E2465439482%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2465439482&rft_id=info:pmid/32746187&rft_ieee_id=9120082&rfr_iscdi=true |