Structured nanoscale metallic glass fibres with extreme aspect ratios
Micro- and nanoscale metallic glasses offer exciting opportunities for both fundamental research and applications in healthcare, micro-engineering, optics and electronics. The scientific and technological challenges associated with the fabrication and utilization of nanoscale metallic glasses, howev...
Gespeichert in:
Veröffentlicht in: | Nature nanotechnology 2020-10, Vol.15 (10), p.875-882 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 882 |
---|---|
container_issue | 10 |
container_start_page | 875 |
container_title | Nature nanotechnology |
container_volume | 15 |
creator | Yan, Wei Richard, Inès Kurtuldu, Güven James, Nicholas D. Schiavone, Giuseppe Squair, Jordan W. Nguyen‐Dang, Tung Das Gupta, Tapajyoti Qu, Yunpeng Cao, Jake D. Ignatans, Reinis Lacour, Stéphanie P. Tileli, Vasiliki Courtine, Grégoire Löffler, Jörg F. Sorin, Fabien |
description | Micro- and nanoscale metallic glasses offer exciting opportunities for both fundamental research and applications in healthcare, micro-engineering, optics and electronics. The scientific and technological challenges associated with the fabrication and utilization of nanoscale metallic glasses, however, remain unresolved. Here, we present a simple and scalable approach for the fabrication of metallic glass fibres with nanoscale architectures based on their thermal co-drawing within a polymer matrix with matched rheological properties. Our method yields well-ordered and uniform metallic glasses with controllable feature sizes down to a few tens of nanometres, and aspect ratios greater than 10
10
. We combine fluid dynamics and advanced in situ transmission electron microscopy analysis to elucidate the interplay between fluid instability and crystallization kinetics that determines the achievable feature sizes. Our approach yields complex fibre architectures that, combined with other functional materials, enable new advanced all-in-fibre devices. We demonstrate in particular an implantable metallic glass-based fibre probe tested in vivo for a stable brain–machine interface that paves the way towards innovative high-performance and multifunctional neuro-probes.
Metallic glasses possess intriguing functional properties, but controlled fabrication with nanoscale feature sizes remains challenging. Thermal co-drawing within a viscosity-matched polymer matrix enables the fabrication of uniform metallic glass fibres with feature sizes down to a few tens of nanometres, arbitrary transverse geometries and aspect ratios greater than 10
10
. |
doi_str_mv | 10.1038/s41565-020-0747-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2430371198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2474991900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-a6a2fa59582e30f01f79827a7c4bcce3d603817348018f6e1b20fad270e554283</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMotlYfwI0MuHEzenKZyWQppV6g4EJdhzRzpk6ZS00yqG9vSmsFwdUJnO__k3yEnFO4psCLGy9olmcpMEhBCpmqAzKmUhQp5yo73J8LOSIn3q8AMqaYOCYjziIuBYzJ7Dm4wYbBYZl0puu9NQ0mLQbTNLVNlo3xPqnqhUOffNThLcHP4LDFxPg12pA4E-ren5KjyjQez3ZzQl7vZi_Th3T-dP84vZ2nlksWUpMbVplMZQVDDhXQSqqCSSOtWFiLvMzjr6jkogBaVDnSBYPKlEwCZplgBZ-Qq23v2vXvA_qg29pbbBrTYT94zQQHLilVG_TyD7rqB9fF10VKCqWoAogU3VLW9d47rPTa1a1xX5qC3jjWW8c6OtYbx1rFzMWueVi0WO4TP1IjwLaAj6tuie736v9bvwE47YW7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2474991900</pqid></control><display><type>article</type><title>Structured nanoscale metallic glass fibres with extreme aspect ratios</title><source>Nature Journals Online</source><source>Alma/SFX Local Collection</source><creator>Yan, Wei ; Richard, Inès ; Kurtuldu, Güven ; James, Nicholas D. ; Schiavone, Giuseppe ; Squair, Jordan W. ; Nguyen‐Dang, Tung ; Das Gupta, Tapajyoti ; Qu, Yunpeng ; Cao, Jake D. ; Ignatans, Reinis ; Lacour, Stéphanie P. ; Tileli, Vasiliki ; Courtine, Grégoire ; Löffler, Jörg F. ; Sorin, Fabien</creator><creatorcontrib>Yan, Wei ; Richard, Inès ; Kurtuldu, Güven ; James, Nicholas D. ; Schiavone, Giuseppe ; Squair, Jordan W. ; Nguyen‐Dang, Tung ; Das Gupta, Tapajyoti ; Qu, Yunpeng ; Cao, Jake D. ; Ignatans, Reinis ; Lacour, Stéphanie P. ; Tileli, Vasiliki ; Courtine, Grégoire ; Löffler, Jörg F. ; Sorin, Fabien</creatorcontrib><description>Micro- and nanoscale metallic glasses offer exciting opportunities for both fundamental research and applications in healthcare, micro-engineering, optics and electronics. The scientific and technological challenges associated with the fabrication and utilization of nanoscale metallic glasses, however, remain unresolved. Here, we present a simple and scalable approach for the fabrication of metallic glass fibres with nanoscale architectures based on their thermal co-drawing within a polymer matrix with matched rheological properties. Our method yields well-ordered and uniform metallic glasses with controllable feature sizes down to a few tens of nanometres, and aspect ratios greater than 10
10
. We combine fluid dynamics and advanced in situ transmission electron microscopy analysis to elucidate the interplay between fluid instability and crystallization kinetics that determines the achievable feature sizes. Our approach yields complex fibre architectures that, combined with other functional materials, enable new advanced all-in-fibre devices. We demonstrate in particular an implantable metallic glass-based fibre probe tested in vivo for a stable brain–machine interface that paves the way towards innovative high-performance and multifunctional neuro-probes.
Metallic glasses possess intriguing functional properties, but controlled fabrication with nanoscale feature sizes remains challenging. Thermal co-drawing within a viscosity-matched polymer matrix enables the fabrication of uniform metallic glass fibres with feature sizes down to a few tens of nanometres, arbitrary transverse geometries and aspect ratios greater than 10
10
.</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/s41565-020-0747-9</identifier><identifier>PMID: 32747740</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1005/1007 ; 639/301/1023/1026 ; 639/301/1023/218 ; 639/301/930/1032 ; Amorphous materials ; Aspect ratio ; Chemistry and Materials Science ; Crystallization ; Fabrication ; Fibers ; Fluid dynamics ; Functional materials ; Glass fiber reinforced plastics ; Hydrodynamics ; Materials Science ; Metallic glasses ; Microengineering ; Nanotechnology ; Nanotechnology and Microengineering ; Optics ; Polymers ; Rheological properties ; Stability analysis ; Surgical implants ; Transmission electron microscopy</subject><ispartof>Nature nanotechnology, 2020-10, Vol.15 (10), p.875-882</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-a6a2fa59582e30f01f79827a7c4bcce3d603817348018f6e1b20fad270e554283</citedby><cites>FETCH-LOGICAL-c372t-a6a2fa59582e30f01f79827a7c4bcce3d603817348018f6e1b20fad270e554283</cites><orcidid>0000-0003-0551-859X ; 0000-0003-2825-6027 ; 0000-0003-4646-7039 ; 0000-0003-1019-6484 ; 0000-0001-7121-9825 ; 0000-0001-9075-4022 ; 0000-0002-4605-2071 ; 0000-0002-0520-6900 ; 0000-0002-5744-4142 ; 0000-0003-0275-6517</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32747740$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yan, Wei</creatorcontrib><creatorcontrib>Richard, Inès</creatorcontrib><creatorcontrib>Kurtuldu, Güven</creatorcontrib><creatorcontrib>James, Nicholas D.</creatorcontrib><creatorcontrib>Schiavone, Giuseppe</creatorcontrib><creatorcontrib>Squair, Jordan W.</creatorcontrib><creatorcontrib>Nguyen‐Dang, Tung</creatorcontrib><creatorcontrib>Das Gupta, Tapajyoti</creatorcontrib><creatorcontrib>Qu, Yunpeng</creatorcontrib><creatorcontrib>Cao, Jake D.</creatorcontrib><creatorcontrib>Ignatans, Reinis</creatorcontrib><creatorcontrib>Lacour, Stéphanie P.</creatorcontrib><creatorcontrib>Tileli, Vasiliki</creatorcontrib><creatorcontrib>Courtine, Grégoire</creatorcontrib><creatorcontrib>Löffler, Jörg F.</creatorcontrib><creatorcontrib>Sorin, Fabien</creatorcontrib><title>Structured nanoscale metallic glass fibres with extreme aspect ratios</title><title>Nature nanotechnology</title><addtitle>Nat. Nanotechnol</addtitle><addtitle>Nat Nanotechnol</addtitle><description>Micro- and nanoscale metallic glasses offer exciting opportunities for both fundamental research and applications in healthcare, micro-engineering, optics and electronics. The scientific and technological challenges associated with the fabrication and utilization of nanoscale metallic glasses, however, remain unresolved. Here, we present a simple and scalable approach for the fabrication of metallic glass fibres with nanoscale architectures based on their thermal co-drawing within a polymer matrix with matched rheological properties. Our method yields well-ordered and uniform metallic glasses with controllable feature sizes down to a few tens of nanometres, and aspect ratios greater than 10
10
. We combine fluid dynamics and advanced in situ transmission electron microscopy analysis to elucidate the interplay between fluid instability and crystallization kinetics that determines the achievable feature sizes. Our approach yields complex fibre architectures that, combined with other functional materials, enable new advanced all-in-fibre devices. We demonstrate in particular an implantable metallic glass-based fibre probe tested in vivo for a stable brain–machine interface that paves the way towards innovative high-performance and multifunctional neuro-probes.
Metallic glasses possess intriguing functional properties, but controlled fabrication with nanoscale feature sizes remains challenging. Thermal co-drawing within a viscosity-matched polymer matrix enables the fabrication of uniform metallic glass fibres with feature sizes down to a few tens of nanometres, arbitrary transverse geometries and aspect ratios greater than 10
10
.</description><subject>639/301/1005/1007</subject><subject>639/301/1023/1026</subject><subject>639/301/1023/218</subject><subject>639/301/930/1032</subject><subject>Amorphous materials</subject><subject>Aspect ratio</subject><subject>Chemistry and Materials Science</subject><subject>Crystallization</subject><subject>Fabrication</subject><subject>Fibers</subject><subject>Fluid dynamics</subject><subject>Functional materials</subject><subject>Glass fiber reinforced plastics</subject><subject>Hydrodynamics</subject><subject>Materials Science</subject><subject>Metallic glasses</subject><subject>Microengineering</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Optics</subject><subject>Polymers</subject><subject>Rheological properties</subject><subject>Stability analysis</subject><subject>Surgical implants</subject><subject>Transmission electron microscopy</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kMtKAzEUhoMotlYfwI0MuHEzenKZyWQppV6g4EJdhzRzpk6ZS00yqG9vSmsFwdUJnO__k3yEnFO4psCLGy9olmcpMEhBCpmqAzKmUhQp5yo73J8LOSIn3q8AMqaYOCYjziIuBYzJ7Dm4wYbBYZl0puu9NQ0mLQbTNLVNlo3xPqnqhUOffNThLcHP4LDFxPg12pA4E-ren5KjyjQez3ZzQl7vZi_Th3T-dP84vZ2nlksWUpMbVplMZQVDDhXQSqqCSSOtWFiLvMzjr6jkogBaVDnSBYPKlEwCZplgBZ-Qq23v2vXvA_qg29pbbBrTYT94zQQHLilVG_TyD7rqB9fF10VKCqWoAogU3VLW9d47rPTa1a1xX5qC3jjWW8c6OtYbx1rFzMWueVi0WO4TP1IjwLaAj6tuie736v9bvwE47YW7</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Yan, Wei</creator><creator>Richard, Inès</creator><creator>Kurtuldu, Güven</creator><creator>James, Nicholas D.</creator><creator>Schiavone, Giuseppe</creator><creator>Squair, Jordan W.</creator><creator>Nguyen‐Dang, Tung</creator><creator>Das Gupta, Tapajyoti</creator><creator>Qu, Yunpeng</creator><creator>Cao, Jake D.</creator><creator>Ignatans, Reinis</creator><creator>Lacour, Stéphanie P.</creator><creator>Tileli, Vasiliki</creator><creator>Courtine, Grégoire</creator><creator>Löffler, Jörg F.</creator><creator>Sorin, Fabien</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0551-859X</orcidid><orcidid>https://orcid.org/0000-0003-2825-6027</orcidid><orcidid>https://orcid.org/0000-0003-4646-7039</orcidid><orcidid>https://orcid.org/0000-0003-1019-6484</orcidid><orcidid>https://orcid.org/0000-0001-7121-9825</orcidid><orcidid>https://orcid.org/0000-0001-9075-4022</orcidid><orcidid>https://orcid.org/0000-0002-4605-2071</orcidid><orcidid>https://orcid.org/0000-0002-0520-6900</orcidid><orcidid>https://orcid.org/0000-0002-5744-4142</orcidid><orcidid>https://orcid.org/0000-0003-0275-6517</orcidid></search><sort><creationdate>20201001</creationdate><title>Structured nanoscale metallic glass fibres with extreme aspect ratios</title><author>Yan, Wei ; Richard, Inès ; Kurtuldu, Güven ; James, Nicholas D. ; Schiavone, Giuseppe ; Squair, Jordan W. ; Nguyen‐Dang, Tung ; Das Gupta, Tapajyoti ; Qu, Yunpeng ; Cao, Jake D. ; Ignatans, Reinis ; Lacour, Stéphanie P. ; Tileli, Vasiliki ; Courtine, Grégoire ; Löffler, Jörg F. ; Sorin, Fabien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-a6a2fa59582e30f01f79827a7c4bcce3d603817348018f6e1b20fad270e554283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/301/1005/1007</topic><topic>639/301/1023/1026</topic><topic>639/301/1023/218</topic><topic>639/301/930/1032</topic><topic>Amorphous materials</topic><topic>Aspect ratio</topic><topic>Chemistry and Materials Science</topic><topic>Crystallization</topic><topic>Fabrication</topic><topic>Fibers</topic><topic>Fluid dynamics</topic><topic>Functional materials</topic><topic>Glass fiber reinforced plastics</topic><topic>Hydrodynamics</topic><topic>Materials Science</topic><topic>Metallic glasses</topic><topic>Microengineering</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Optics</topic><topic>Polymers</topic><topic>Rheological properties</topic><topic>Stability analysis</topic><topic>Surgical implants</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Wei</creatorcontrib><creatorcontrib>Richard, Inès</creatorcontrib><creatorcontrib>Kurtuldu, Güven</creatorcontrib><creatorcontrib>James, Nicholas D.</creatorcontrib><creatorcontrib>Schiavone, Giuseppe</creatorcontrib><creatorcontrib>Squair, Jordan W.</creatorcontrib><creatorcontrib>Nguyen‐Dang, Tung</creatorcontrib><creatorcontrib>Das Gupta, Tapajyoti</creatorcontrib><creatorcontrib>Qu, Yunpeng</creatorcontrib><creatorcontrib>Cao, Jake D.</creatorcontrib><creatorcontrib>Ignatans, Reinis</creatorcontrib><creatorcontrib>Lacour, Stéphanie P.</creatorcontrib><creatorcontrib>Tileli, Vasiliki</creatorcontrib><creatorcontrib>Courtine, Grégoire</creatorcontrib><creatorcontrib>Löffler, Jörg F.</creatorcontrib><creatorcontrib>Sorin, Fabien</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Wei</au><au>Richard, Inès</au><au>Kurtuldu, Güven</au><au>James, Nicholas D.</au><au>Schiavone, Giuseppe</au><au>Squair, Jordan W.</au><au>Nguyen‐Dang, Tung</au><au>Das Gupta, Tapajyoti</au><au>Qu, Yunpeng</au><au>Cao, Jake D.</au><au>Ignatans, Reinis</au><au>Lacour, Stéphanie P.</au><au>Tileli, Vasiliki</au><au>Courtine, Grégoire</au><au>Löffler, Jörg F.</au><au>Sorin, Fabien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structured nanoscale metallic glass fibres with extreme aspect ratios</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nat. Nanotechnol</stitle><addtitle>Nat Nanotechnol</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>15</volume><issue>10</issue><spage>875</spage><epage>882</epage><pages>875-882</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>Micro- and nanoscale metallic glasses offer exciting opportunities for both fundamental research and applications in healthcare, micro-engineering, optics and electronics. The scientific and technological challenges associated with the fabrication and utilization of nanoscale metallic glasses, however, remain unresolved. Here, we present a simple and scalable approach for the fabrication of metallic glass fibres with nanoscale architectures based on their thermal co-drawing within a polymer matrix with matched rheological properties. Our method yields well-ordered and uniform metallic glasses with controllable feature sizes down to a few tens of nanometres, and aspect ratios greater than 10
10
. We combine fluid dynamics and advanced in situ transmission electron microscopy analysis to elucidate the interplay between fluid instability and crystallization kinetics that determines the achievable feature sizes. Our approach yields complex fibre architectures that, combined with other functional materials, enable new advanced all-in-fibre devices. We demonstrate in particular an implantable metallic glass-based fibre probe tested in vivo for a stable brain–machine interface that paves the way towards innovative high-performance and multifunctional neuro-probes.
Metallic glasses possess intriguing functional properties, but controlled fabrication with nanoscale feature sizes remains challenging. Thermal co-drawing within a viscosity-matched polymer matrix enables the fabrication of uniform metallic glass fibres with feature sizes down to a few tens of nanometres, arbitrary transverse geometries and aspect ratios greater than 10
10
.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32747740</pmid><doi>10.1038/s41565-020-0747-9</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0551-859X</orcidid><orcidid>https://orcid.org/0000-0003-2825-6027</orcidid><orcidid>https://orcid.org/0000-0003-4646-7039</orcidid><orcidid>https://orcid.org/0000-0003-1019-6484</orcidid><orcidid>https://orcid.org/0000-0001-7121-9825</orcidid><orcidid>https://orcid.org/0000-0001-9075-4022</orcidid><orcidid>https://orcid.org/0000-0002-4605-2071</orcidid><orcidid>https://orcid.org/0000-0002-0520-6900</orcidid><orcidid>https://orcid.org/0000-0002-5744-4142</orcidid><orcidid>https://orcid.org/0000-0003-0275-6517</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-3387 |
ispartof | Nature nanotechnology, 2020-10, Vol.15 (10), p.875-882 |
issn | 1748-3387 1748-3395 |
language | eng |
recordid | cdi_proquest_miscellaneous_2430371198 |
source | Nature Journals Online; Alma/SFX Local Collection |
subjects | 639/301/1005/1007 639/301/1023/1026 639/301/1023/218 639/301/930/1032 Amorphous materials Aspect ratio Chemistry and Materials Science Crystallization Fabrication Fibers Fluid dynamics Functional materials Glass fiber reinforced plastics Hydrodynamics Materials Science Metallic glasses Microengineering Nanotechnology Nanotechnology and Microengineering Optics Polymers Rheological properties Stability analysis Surgical implants Transmission electron microscopy |
title | Structured nanoscale metallic glass fibres with extreme aspect ratios |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T16%3A19%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structured%20nanoscale%20metallic%20glass%20fibres%20with%20extreme%20aspect%20ratios&rft.jtitle=Nature%20nanotechnology&rft.au=Yan,%20Wei&rft.date=2020-10-01&rft.volume=15&rft.issue=10&rft.spage=875&rft.epage=882&rft.pages=875-882&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/s41565-020-0747-9&rft_dat=%3Cproquest_cross%3E2474991900%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2474991900&rft_id=info:pmid/32747740&rfr_iscdi=true |