Structured nanoscale metallic glass fibres with extreme aspect ratios

Micro- and nanoscale metallic glasses offer exciting opportunities for both fundamental research and applications in healthcare, micro-engineering, optics and electronics. The scientific and technological challenges associated with the fabrication and utilization of nanoscale metallic glasses, howev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature nanotechnology 2020-10, Vol.15 (10), p.875-882
Hauptverfasser: Yan, Wei, Richard, Inès, Kurtuldu, Güven, James, Nicholas D., Schiavone, Giuseppe, Squair, Jordan W., Nguyen‐Dang, Tung, Das Gupta, Tapajyoti, Qu, Yunpeng, Cao, Jake D., Ignatans, Reinis, Lacour, Stéphanie P., Tileli, Vasiliki, Courtine, Grégoire, Löffler, Jörg F., Sorin, Fabien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 882
container_issue 10
container_start_page 875
container_title Nature nanotechnology
container_volume 15
creator Yan, Wei
Richard, Inès
Kurtuldu, Güven
James, Nicholas D.
Schiavone, Giuseppe
Squair, Jordan W.
Nguyen‐Dang, Tung
Das Gupta, Tapajyoti
Qu, Yunpeng
Cao, Jake D.
Ignatans, Reinis
Lacour, Stéphanie P.
Tileli, Vasiliki
Courtine, Grégoire
Löffler, Jörg F.
Sorin, Fabien
description Micro- and nanoscale metallic glasses offer exciting opportunities for both fundamental research and applications in healthcare, micro-engineering, optics and electronics. The scientific and technological challenges associated with the fabrication and utilization of nanoscale metallic glasses, however, remain unresolved. Here, we present a simple and scalable approach for the fabrication of metallic glass fibres with nanoscale architectures based on their thermal co-drawing within a polymer matrix with matched rheological properties. Our method yields well-ordered and uniform metallic glasses with controllable feature sizes down to a few tens of nanometres, and aspect ratios greater than 10 10 . We combine fluid dynamics and advanced in situ transmission electron microscopy analysis to elucidate the interplay between fluid instability and crystallization kinetics that determines the achievable feature sizes. Our approach yields complex fibre architectures that, combined with other functional materials, enable new advanced all-in-fibre devices. We demonstrate in particular an implantable metallic glass-based fibre probe tested in vivo for a stable brain–machine interface that paves the way towards innovative high-performance and multifunctional neuro-probes. Metallic glasses possess intriguing functional properties, but controlled fabrication with nanoscale feature sizes remains challenging. Thermal co-drawing within a viscosity-matched polymer matrix enables the fabrication of uniform metallic glass fibres with feature sizes down to a few tens of nanometres, arbitrary transverse geometries and aspect ratios greater than 10 10 .
doi_str_mv 10.1038/s41565-020-0747-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2430371198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2474991900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-a6a2fa59582e30f01f79827a7c4bcce3d603817348018f6e1b20fad270e554283</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMotlYfwI0MuHEzenKZyWQppV6g4EJdhzRzpk6ZS00yqG9vSmsFwdUJnO__k3yEnFO4psCLGy9olmcpMEhBCpmqAzKmUhQp5yo73J8LOSIn3q8AMqaYOCYjziIuBYzJ7Dm4wYbBYZl0puu9NQ0mLQbTNLVNlo3xPqnqhUOffNThLcHP4LDFxPg12pA4E-ren5KjyjQez3ZzQl7vZi_Th3T-dP84vZ2nlksWUpMbVplMZQVDDhXQSqqCSSOtWFiLvMzjr6jkogBaVDnSBYPKlEwCZplgBZ-Qq23v2vXvA_qg29pbbBrTYT94zQQHLilVG_TyD7rqB9fF10VKCqWoAogU3VLW9d47rPTa1a1xX5qC3jjWW8c6OtYbx1rFzMWueVi0WO4TP1IjwLaAj6tuie736v9bvwE47YW7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2474991900</pqid></control><display><type>article</type><title>Structured nanoscale metallic glass fibres with extreme aspect ratios</title><source>Nature Journals Online</source><source>Alma/SFX Local Collection</source><creator>Yan, Wei ; Richard, Inès ; Kurtuldu, Güven ; James, Nicholas D. ; Schiavone, Giuseppe ; Squair, Jordan W. ; Nguyen‐Dang, Tung ; Das Gupta, Tapajyoti ; Qu, Yunpeng ; Cao, Jake D. ; Ignatans, Reinis ; Lacour, Stéphanie P. ; Tileli, Vasiliki ; Courtine, Grégoire ; Löffler, Jörg F. ; Sorin, Fabien</creator><creatorcontrib>Yan, Wei ; Richard, Inès ; Kurtuldu, Güven ; James, Nicholas D. ; Schiavone, Giuseppe ; Squair, Jordan W. ; Nguyen‐Dang, Tung ; Das Gupta, Tapajyoti ; Qu, Yunpeng ; Cao, Jake D. ; Ignatans, Reinis ; Lacour, Stéphanie P. ; Tileli, Vasiliki ; Courtine, Grégoire ; Löffler, Jörg F. ; Sorin, Fabien</creatorcontrib><description>Micro- and nanoscale metallic glasses offer exciting opportunities for both fundamental research and applications in healthcare, micro-engineering, optics and electronics. The scientific and technological challenges associated with the fabrication and utilization of nanoscale metallic glasses, however, remain unresolved. Here, we present a simple and scalable approach for the fabrication of metallic glass fibres with nanoscale architectures based on their thermal co-drawing within a polymer matrix with matched rheological properties. Our method yields well-ordered and uniform metallic glasses with controllable feature sizes down to a few tens of nanometres, and aspect ratios greater than 10 10 . We combine fluid dynamics and advanced in situ transmission electron microscopy analysis to elucidate the interplay between fluid instability and crystallization kinetics that determines the achievable feature sizes. Our approach yields complex fibre architectures that, combined with other functional materials, enable new advanced all-in-fibre devices. We demonstrate in particular an implantable metallic glass-based fibre probe tested in vivo for a stable brain–machine interface that paves the way towards innovative high-performance and multifunctional neuro-probes. Metallic glasses possess intriguing functional properties, but controlled fabrication with nanoscale feature sizes remains challenging. Thermal co-drawing within a viscosity-matched polymer matrix enables the fabrication of uniform metallic glass fibres with feature sizes down to a few tens of nanometres, arbitrary transverse geometries and aspect ratios greater than 10 10 .</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/s41565-020-0747-9</identifier><identifier>PMID: 32747740</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1005/1007 ; 639/301/1023/1026 ; 639/301/1023/218 ; 639/301/930/1032 ; Amorphous materials ; Aspect ratio ; Chemistry and Materials Science ; Crystallization ; Fabrication ; Fibers ; Fluid dynamics ; Functional materials ; Glass fiber reinforced plastics ; Hydrodynamics ; Materials Science ; Metallic glasses ; Microengineering ; Nanotechnology ; Nanotechnology and Microengineering ; Optics ; Polymers ; Rheological properties ; Stability analysis ; Surgical implants ; Transmission electron microscopy</subject><ispartof>Nature nanotechnology, 2020-10, Vol.15 (10), p.875-882</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-a6a2fa59582e30f01f79827a7c4bcce3d603817348018f6e1b20fad270e554283</citedby><cites>FETCH-LOGICAL-c372t-a6a2fa59582e30f01f79827a7c4bcce3d603817348018f6e1b20fad270e554283</cites><orcidid>0000-0003-0551-859X ; 0000-0003-2825-6027 ; 0000-0003-4646-7039 ; 0000-0003-1019-6484 ; 0000-0001-7121-9825 ; 0000-0001-9075-4022 ; 0000-0002-4605-2071 ; 0000-0002-0520-6900 ; 0000-0002-5744-4142 ; 0000-0003-0275-6517</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32747740$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yan, Wei</creatorcontrib><creatorcontrib>Richard, Inès</creatorcontrib><creatorcontrib>Kurtuldu, Güven</creatorcontrib><creatorcontrib>James, Nicholas D.</creatorcontrib><creatorcontrib>Schiavone, Giuseppe</creatorcontrib><creatorcontrib>Squair, Jordan W.</creatorcontrib><creatorcontrib>Nguyen‐Dang, Tung</creatorcontrib><creatorcontrib>Das Gupta, Tapajyoti</creatorcontrib><creatorcontrib>Qu, Yunpeng</creatorcontrib><creatorcontrib>Cao, Jake D.</creatorcontrib><creatorcontrib>Ignatans, Reinis</creatorcontrib><creatorcontrib>Lacour, Stéphanie P.</creatorcontrib><creatorcontrib>Tileli, Vasiliki</creatorcontrib><creatorcontrib>Courtine, Grégoire</creatorcontrib><creatorcontrib>Löffler, Jörg F.</creatorcontrib><creatorcontrib>Sorin, Fabien</creatorcontrib><title>Structured nanoscale metallic glass fibres with extreme aspect ratios</title><title>Nature nanotechnology</title><addtitle>Nat. Nanotechnol</addtitle><addtitle>Nat Nanotechnol</addtitle><description>Micro- and nanoscale metallic glasses offer exciting opportunities for both fundamental research and applications in healthcare, micro-engineering, optics and electronics. The scientific and technological challenges associated with the fabrication and utilization of nanoscale metallic glasses, however, remain unresolved. Here, we present a simple and scalable approach for the fabrication of metallic glass fibres with nanoscale architectures based on their thermal co-drawing within a polymer matrix with matched rheological properties. Our method yields well-ordered and uniform metallic glasses with controllable feature sizes down to a few tens of nanometres, and aspect ratios greater than 10 10 . We combine fluid dynamics and advanced in situ transmission electron microscopy analysis to elucidate the interplay between fluid instability and crystallization kinetics that determines the achievable feature sizes. Our approach yields complex fibre architectures that, combined with other functional materials, enable new advanced all-in-fibre devices. We demonstrate in particular an implantable metallic glass-based fibre probe tested in vivo for a stable brain–machine interface that paves the way towards innovative high-performance and multifunctional neuro-probes. Metallic glasses possess intriguing functional properties, but controlled fabrication with nanoscale feature sizes remains challenging. Thermal co-drawing within a viscosity-matched polymer matrix enables the fabrication of uniform metallic glass fibres with feature sizes down to a few tens of nanometres, arbitrary transverse geometries and aspect ratios greater than 10 10 .</description><subject>639/301/1005/1007</subject><subject>639/301/1023/1026</subject><subject>639/301/1023/218</subject><subject>639/301/930/1032</subject><subject>Amorphous materials</subject><subject>Aspect ratio</subject><subject>Chemistry and Materials Science</subject><subject>Crystallization</subject><subject>Fabrication</subject><subject>Fibers</subject><subject>Fluid dynamics</subject><subject>Functional materials</subject><subject>Glass fiber reinforced plastics</subject><subject>Hydrodynamics</subject><subject>Materials Science</subject><subject>Metallic glasses</subject><subject>Microengineering</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Optics</subject><subject>Polymers</subject><subject>Rheological properties</subject><subject>Stability analysis</subject><subject>Surgical implants</subject><subject>Transmission electron microscopy</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kMtKAzEUhoMotlYfwI0MuHEzenKZyWQppV6g4EJdhzRzpk6ZS00yqG9vSmsFwdUJnO__k3yEnFO4psCLGy9olmcpMEhBCpmqAzKmUhQp5yo73J8LOSIn3q8AMqaYOCYjziIuBYzJ7Dm4wYbBYZl0puu9NQ0mLQbTNLVNlo3xPqnqhUOffNThLcHP4LDFxPg12pA4E-ren5KjyjQez3ZzQl7vZi_Th3T-dP84vZ2nlksWUpMbVplMZQVDDhXQSqqCSSOtWFiLvMzjr6jkogBaVDnSBYPKlEwCZplgBZ-Qq23v2vXvA_qg29pbbBrTYT94zQQHLilVG_TyD7rqB9fF10VKCqWoAogU3VLW9d47rPTa1a1xX5qC3jjWW8c6OtYbx1rFzMWueVi0WO4TP1IjwLaAj6tuie736v9bvwE47YW7</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Yan, Wei</creator><creator>Richard, Inès</creator><creator>Kurtuldu, Güven</creator><creator>James, Nicholas D.</creator><creator>Schiavone, Giuseppe</creator><creator>Squair, Jordan W.</creator><creator>Nguyen‐Dang, Tung</creator><creator>Das Gupta, Tapajyoti</creator><creator>Qu, Yunpeng</creator><creator>Cao, Jake D.</creator><creator>Ignatans, Reinis</creator><creator>Lacour, Stéphanie P.</creator><creator>Tileli, Vasiliki</creator><creator>Courtine, Grégoire</creator><creator>Löffler, Jörg F.</creator><creator>Sorin, Fabien</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0551-859X</orcidid><orcidid>https://orcid.org/0000-0003-2825-6027</orcidid><orcidid>https://orcid.org/0000-0003-4646-7039</orcidid><orcidid>https://orcid.org/0000-0003-1019-6484</orcidid><orcidid>https://orcid.org/0000-0001-7121-9825</orcidid><orcidid>https://orcid.org/0000-0001-9075-4022</orcidid><orcidid>https://orcid.org/0000-0002-4605-2071</orcidid><orcidid>https://orcid.org/0000-0002-0520-6900</orcidid><orcidid>https://orcid.org/0000-0002-5744-4142</orcidid><orcidid>https://orcid.org/0000-0003-0275-6517</orcidid></search><sort><creationdate>20201001</creationdate><title>Structured nanoscale metallic glass fibres with extreme aspect ratios</title><author>Yan, Wei ; Richard, Inès ; Kurtuldu, Güven ; James, Nicholas D. ; Schiavone, Giuseppe ; Squair, Jordan W. ; Nguyen‐Dang, Tung ; Das Gupta, Tapajyoti ; Qu, Yunpeng ; Cao, Jake D. ; Ignatans, Reinis ; Lacour, Stéphanie P. ; Tileli, Vasiliki ; Courtine, Grégoire ; Löffler, Jörg F. ; Sorin, Fabien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-a6a2fa59582e30f01f79827a7c4bcce3d603817348018f6e1b20fad270e554283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/301/1005/1007</topic><topic>639/301/1023/1026</topic><topic>639/301/1023/218</topic><topic>639/301/930/1032</topic><topic>Amorphous materials</topic><topic>Aspect ratio</topic><topic>Chemistry and Materials Science</topic><topic>Crystallization</topic><topic>Fabrication</topic><topic>Fibers</topic><topic>Fluid dynamics</topic><topic>Functional materials</topic><topic>Glass fiber reinforced plastics</topic><topic>Hydrodynamics</topic><topic>Materials Science</topic><topic>Metallic glasses</topic><topic>Microengineering</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Optics</topic><topic>Polymers</topic><topic>Rheological properties</topic><topic>Stability analysis</topic><topic>Surgical implants</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Wei</creatorcontrib><creatorcontrib>Richard, Inès</creatorcontrib><creatorcontrib>Kurtuldu, Güven</creatorcontrib><creatorcontrib>James, Nicholas D.</creatorcontrib><creatorcontrib>Schiavone, Giuseppe</creatorcontrib><creatorcontrib>Squair, Jordan W.</creatorcontrib><creatorcontrib>Nguyen‐Dang, Tung</creatorcontrib><creatorcontrib>Das Gupta, Tapajyoti</creatorcontrib><creatorcontrib>Qu, Yunpeng</creatorcontrib><creatorcontrib>Cao, Jake D.</creatorcontrib><creatorcontrib>Ignatans, Reinis</creatorcontrib><creatorcontrib>Lacour, Stéphanie P.</creatorcontrib><creatorcontrib>Tileli, Vasiliki</creatorcontrib><creatorcontrib>Courtine, Grégoire</creatorcontrib><creatorcontrib>Löffler, Jörg F.</creatorcontrib><creatorcontrib>Sorin, Fabien</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Wei</au><au>Richard, Inès</au><au>Kurtuldu, Güven</au><au>James, Nicholas D.</au><au>Schiavone, Giuseppe</au><au>Squair, Jordan W.</au><au>Nguyen‐Dang, Tung</au><au>Das Gupta, Tapajyoti</au><au>Qu, Yunpeng</au><au>Cao, Jake D.</au><au>Ignatans, Reinis</au><au>Lacour, Stéphanie P.</au><au>Tileli, Vasiliki</au><au>Courtine, Grégoire</au><au>Löffler, Jörg F.</au><au>Sorin, Fabien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structured nanoscale metallic glass fibres with extreme aspect ratios</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nat. Nanotechnol</stitle><addtitle>Nat Nanotechnol</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>15</volume><issue>10</issue><spage>875</spage><epage>882</epage><pages>875-882</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>Micro- and nanoscale metallic glasses offer exciting opportunities for both fundamental research and applications in healthcare, micro-engineering, optics and electronics. The scientific and technological challenges associated with the fabrication and utilization of nanoscale metallic glasses, however, remain unresolved. Here, we present a simple and scalable approach for the fabrication of metallic glass fibres with nanoscale architectures based on their thermal co-drawing within a polymer matrix with matched rheological properties. Our method yields well-ordered and uniform metallic glasses with controllable feature sizes down to a few tens of nanometres, and aspect ratios greater than 10 10 . We combine fluid dynamics and advanced in situ transmission electron microscopy analysis to elucidate the interplay between fluid instability and crystallization kinetics that determines the achievable feature sizes. Our approach yields complex fibre architectures that, combined with other functional materials, enable new advanced all-in-fibre devices. We demonstrate in particular an implantable metallic glass-based fibre probe tested in vivo for a stable brain–machine interface that paves the way towards innovative high-performance and multifunctional neuro-probes. Metallic glasses possess intriguing functional properties, but controlled fabrication with nanoscale feature sizes remains challenging. Thermal co-drawing within a viscosity-matched polymer matrix enables the fabrication of uniform metallic glass fibres with feature sizes down to a few tens of nanometres, arbitrary transverse geometries and aspect ratios greater than 10 10 .</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32747740</pmid><doi>10.1038/s41565-020-0747-9</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0551-859X</orcidid><orcidid>https://orcid.org/0000-0003-2825-6027</orcidid><orcidid>https://orcid.org/0000-0003-4646-7039</orcidid><orcidid>https://orcid.org/0000-0003-1019-6484</orcidid><orcidid>https://orcid.org/0000-0001-7121-9825</orcidid><orcidid>https://orcid.org/0000-0001-9075-4022</orcidid><orcidid>https://orcid.org/0000-0002-4605-2071</orcidid><orcidid>https://orcid.org/0000-0002-0520-6900</orcidid><orcidid>https://orcid.org/0000-0002-5744-4142</orcidid><orcidid>https://orcid.org/0000-0003-0275-6517</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1748-3387
ispartof Nature nanotechnology, 2020-10, Vol.15 (10), p.875-882
issn 1748-3387
1748-3395
language eng
recordid cdi_proquest_miscellaneous_2430371198
source Nature Journals Online; Alma/SFX Local Collection
subjects 639/301/1005/1007
639/301/1023/1026
639/301/1023/218
639/301/930/1032
Amorphous materials
Aspect ratio
Chemistry and Materials Science
Crystallization
Fabrication
Fibers
Fluid dynamics
Functional materials
Glass fiber reinforced plastics
Hydrodynamics
Materials Science
Metallic glasses
Microengineering
Nanotechnology
Nanotechnology and Microengineering
Optics
Polymers
Rheological properties
Stability analysis
Surgical implants
Transmission electron microscopy
title Structured nanoscale metallic glass fibres with extreme aspect ratios
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T16%3A19%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structured%20nanoscale%20metallic%20glass%20fibres%20with%20extreme%20aspect%20ratios&rft.jtitle=Nature%20nanotechnology&rft.au=Yan,%20Wei&rft.date=2020-10-01&rft.volume=15&rft.issue=10&rft.spage=875&rft.epage=882&rft.pages=875-882&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/s41565-020-0747-9&rft_dat=%3Cproquest_cross%3E2474991900%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2474991900&rft_id=info:pmid/32747740&rfr_iscdi=true